On Characterization of Best Approximation with Certain Constraints

Shu-Sheng Xu
Department of Mathematics, Jiangnan University, Wuxi, Jiangsu Province, China 214063

Communicated by Rong-Qing Jia

Received January 30, 1991; accepted in revised form December 3, 1996

Abstract

The paper improves the characterization theorem of a best uniform approximation by a set of generalized polynomials having restricted ranges of derivatives obtained in an earlier paper and gives a characterization of a best approximation with certain constraints in the L_{p} norm $(1 \leqslant p<+\infty)$. These results are applicable to many standard approximations with constraints. © 1998 Academic Press

1. INTRODUCTION

Assume $\mathscr{X} \subset[a, b]$ is a compact set containing at least $n+1$ points, $\Phi_{n}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is an n-dimensional subspace of $L_{p}[a, b]$ with $1 \leqslant p \leqslant+\infty$, and for a fixed nonnegative integer k, the k th derivatives $\varphi_{1}^{(k)}, \ldots, \varphi_{n}^{(k)}$ are continuous. For $s=0,1, \ldots, k$, assume that $\left\{\varphi_{1}^{(s)}, \ldots, \varphi_{n}^{(s)}\right\}$ has a maximal linearly independent subset which is an extended. Chebyshev system of order r_{s} on $[a, b]$ (see the definition in [10, Chap. 1, Sect. 2], and write

$$
K_{s}=\left\{q \in \Phi_{n}: l_{s}(x) \leqslant q^{(s)}(x) \leqslant u_{s}(x), x \in[a, b]\right\},
$$

where l_{s} and u_{s} are extended real valued functions such that $-\infty \leqslant$ $l_{s}(x) \leqslant u_{s}(x) \leqslant+\infty$. Let

$$
K_{S}=\bigcap_{s=0}^{k} K_{s} .
$$

With respect to uniform approximation (i.e., $p=+\infty$) by K_{0}, which is the set of generalized polynomials having restricted ranges, Taylor [2] (1969) got a characterization theorem of a best approximation under the hypothesis $l_{0}<u_{0}$. The investigation by Shih [3] (1980) allows $l_{0}\left(x_{i}\right)=$ $u_{0}\left(x_{i}\right)$ at a set of nodes $\left\{x_{i}\right\}$, but some strong conditions are required. Getting rid of Shih's strong conditions, the author [4] (1992) and Zhong [5] (1993) independently gave the characterization theorems in forms of
convex hulls and alternation in the general case of $l_{0}(x) \leqslant u_{0}(x)$, which contains the special cases of approximation with interpolatory constraints, one-sided approximation, and copositive approximation. As we pointed out in [4], all the characterization theorems in [6], [7], and [8] are special cases of the case in [4]. However, the later result of Zhong [9] (1993) is not a special case of [4] because in order to apply it to the copositive case, $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ must be a Chebyshev system of order 2 while it is only required to be a Chebyshev system by [9].

Recently, we [1] got a characterization of a best uniform approximation by K_{S}, which has many special cases such as monotone approximation, coconvex approximation, multiple comonotone approximation, approximation with Hermite-Birkhoff interpolatory side conditions, and approximation by algebraic polynomials having bounded coefficients (if $0 \in[a, b]$), etc.

In this paper, we first improve the result of [1] and then give a characterization theorem of a best $L_{p}(1 \leqslant p<+\infty)$ approximation by the product of K_{S} and a so-called "local convex cone."

2. MAIN RESULTS

To introduce the main results of this paper, we need some notation.
For a fixed $q_{0} \in K_{s}$, let

$$
d\left(q_{0}^{(s)}(x), l_{s}\right)=\inf _{\xi \in[a, b]} \sqrt{(\xi-x)^{2}+\left[l_{s}(\xi)-q_{0}^{(s)}(x)\right]^{2}}
$$

and define $d\left(q_{0}^{(s)}(x), u_{s}\right)$ similarly. Write the set of all the nodes of K_{s} as

$$
X_{s}^{*}=\left\{x \in[a, b]: d\left(q_{0}^{(s)}(x), l_{s}\right)=d\left(q_{0}^{(s)}(x), u_{s}\right)=0\right\} .
$$

If $x \in[a, b)$, by the use of

$$
\begin{equation*}
\varliminf_{\xi \rightarrow x+0} \frac{u_{s}(\xi)-q_{0}^{(s)}(\xi)}{|\xi-x|^{t-1}}=0 \tag{1}
\end{equation*}
$$

we define an integer-valued function $t_{s, 1,1}(x)$ as follows:

$$
t_{s, 1,1}(x)= \begin{cases}0, & \text { if } x \notin X_{s}^{*} \text { and (1) does not hold for any positive integer } t, \\ 1, & \text { if } x \in X_{s}^{*} \text { and (1) does not hold for any positive integer } t \\ \tau, & \text { if there exists a positive integer } \tau<r_{s} \text { such that (1) holds } \\ \quad \text { for } t=\tau \text { but not for } t=\tau+1, \\ r_{s}+1, & \text { if }(1) \text { holds for } t=r_{s} \text { but not for any positive integer } t, \\ +\infty, & \text { if (1) holds for any positive integer } t .\end{cases}
$$

Similarly, using

$$
\begin{equation*}
\varliminf_{\xi \rightarrow x+0} \frac{q_{0}^{(s)}(\xi)-l_{s}(\xi)}{|\xi-x|^{t-1}}=0 \tag{2}
\end{equation*}
$$

we define $t_{s, 1,-1}(x)$. And substituting $x-0$ for $x+0$ in (1) and (2), we define $t_{s,-1,1}(x)$ and $t_{s,-1,-1}(x)$ respectively for $x \in(a, b]$.

Given $x \in[a, b]$, write

$$
\begin{aligned}
t_{ \pm} & =\max \left\{\min \left\{t_{s, 1,1}(x), t_{s, 1,-1}(x)\right\}, \min \left\{t_{s,-1,1}(x), t_{s,-1,-1}(x)\right\}\right\}, \\
\omega & =(-1)^{t_{ \pm}}
\end{aligned}
$$

and define

$$
\begin{aligned}
t_{s}(x) & = \begin{cases}t_{ \pm}+1, & \text { if there exists a } v \text { such that } t_{s, 1, v}(x), t_{s,-1,-\omega v}(x)>t_{ \pm}, \\
t_{ \pm}, & \text {otherwise },\end{cases} \\
T_{s} & =\max _{x \in[a, b]}\left\{t_{s}(x)\right\} .
\end{aligned}
$$

Similar to the explanation for $t(x)$ at the end of Section 3 of [4], where $t(x)$ coincides with $t_{0}(x)$ here, we see that under the condition of (4) below $t_{s}(x)$ is just the minimum of the orders of the zero x of $q_{1}-q_{2}$ for all choices of $q_{1}, q_{2} \in K_{s}$. So in fact $t_{s}(x)$ and T_{s} are independent of the choices of q_{0}, and hence we call $t_{s}(x)$ the order of quasi-touch of l_{s} and u_{s} at x, and T_{s} the order of quasi-touch of l_{s} and u_{s} on $[a, b]$.

In what follows we always assume that $q_{0} \in K_{s}$ unless otherwise stated, and for each $s=0, \ldots, k$,

$$
\begin{equation*}
\left\{q^{(s)}: q \in K_{s}\right\} \backslash\left\{q_{0}^{(s)}\right\} \neq \varnothing \tag{3}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
T_{s} \leqslant r_{s}, \tag{4}\\
t_{s}(x)<r_{s}, \quad x \in X_{s}^{\prime \prime},
\end{array}\right.
$$

where $X_{s}^{\prime \prime}$ will be defined later.
Let

$$
\begin{aligned}
X_{s}^{\prime} & =\left\{x \in[a, b] \backslash X_{s}^{*}: d\left(q_{0}^{(s)}(x), l_{s}\right) \text { or } d\left(q_{0}^{(s)}(x), u_{s}\right)=0\right\}, \\
\sigma_{s}(x) & = \begin{cases}1, & \text { if } x \in X_{s}^{\prime} \text { and } d\left(q_{0}^{(s)}(x), l_{s}\right)=0, \\
-1, & \text { if } x \in X_{s}^{\prime} \text { and } d\left(q_{0}^{(s)}(x), u_{s}\right)=0 ;\end{cases} \\
X_{s}^{\prime \prime} & =\left\{x \in X_{s}^{*}: \text { there exist } \mu \text { and } v \text { such that } t_{s, \mu, v}(x)>t_{s}(x)\right\}, \\
\sigma_{s}(x) & =-v(-1)^{[(\mu-1) / 2] t_{s}(x)}, \quad \text { if } x \in X_{s}^{\prime \prime} \text { and } t_{s, \mu, v}(x)>t_{s(x)} ;
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{x}= & \left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right), \\
\hat{x}^{(s+t)}= & \left(\varphi_{1}^{(s+t)}(x), \ldots, \varphi_{n}^{(s+t)}(x)\right), \\
N_{s}= & \left\{ \pm \hat{x}^{(s+t)}: t=0,1, \ldots, t_{s}(x)-1, x \in X_{s}^{*}\right\} \\
& \cup\left\{-\sigma_{s}(x) \hat{x}^{\left(s+t_{s}(x)\right)}: x \in X_{s}^{\prime} \cup X_{s}^{\prime \prime}\right\} .
\end{aligned}
$$

Moreover, for $f \in C(\mathscr{X})$ or $f \in L_{p}[a, b]$ with $1 \leqslant p<+\infty$, we write respectively

$$
K_{q_{0}}^{\infty}=\left\{q \in \Phi_{n}:\|f-q\|_{\infty}<\left\|f-q_{0}\right\|_{\infty}\right\}
$$

or

$$
K_{q_{0}}^{p}=\left\{q \in \Phi_{n}:\|f-q\|_{p}<\left\|f-q_{0}\right\|_{p}\right\} .
$$

And if $f \in C(\mathscr{X})$, we write

$$
X=\left\{x \in \mathscr{X}:\left|f(x)-q_{0}(x)\right|=\left\|f-q_{0}\right\|_{\infty}\right\}
$$

and

$$
N_{q_{0}}=\left\{-\operatorname{sgn}\left[f(x)-q_{0}(x)\right] \hat{x}: x \in X\right\} .
$$

By letting $q_{1}=\sum_{j=1}^{n} a_{j} \varphi_{j}$ and $q_{2}=\sum_{j=1}^{n} b_{j} \varphi_{j}$ be any elements of Φ_{n}, we define their inner product by $\left(q_{1}, q_{2}\right)=\sum_{j=1}^{n} a_{j} b_{j}$. For any subset A of the space Φ_{n}, we define

$$
A^{\circ}=\left\{h \in \Phi_{n}:(q, h) \leqslant 0, \forall q \in A\right\} .
$$

Let
$\operatorname{cc}(A)=\left\{q: q=\sum_{j=1}^{m} \lambda_{j} q_{j}, q_{j} \in A, \lambda_{j} \geqslant 0, m\right.$ is an arbitrary positive integer $\}$
if $A \neq \varnothing$, and $\operatorname{cc}(A)=\{0\}$ if $A=\varnothing$. By $\overline{\operatorname{cc}}(A)$ we denote the closure of $\operatorname{cc}(A)$. And the relative interior of A in Φ_{n}, which we denote by $\operatorname{ri}(A)$, is defined as follows:

$$
\operatorname{ri}(A)=\{q \in \operatorname{aff}(A): \exists \delta>0, O(q, \delta) \cap \operatorname{aff}(A) \subset A\}
$$

where

$$
\operatorname{aff}(A):=\left\{\lambda_{1} q_{1}+\cdots+\lambda_{m} q_{m} \mid q_{i} \in A, \lambda_{1}+\cdots+\lambda_{m}=1\right\}
$$

and $O(q, \delta)$ is the δ-neighborhood of q.
Now we can restate the main result of [1] as follows:

Theorem A. Assume that $f \in C(\mathscr{X}) \backslash K_{S}, K_{q_{0}}^{\infty} \neq \varnothing$. If

$$
\bigcap_{s=0}^{k} \operatorname{ri}\left(K_{s}\right) \neq \varnothing
$$

then q_{0} is a best uniform approximation to f from K_{S} if and only if there exists a vector $h \in \operatorname{cc}\left(N_{q_{0}}\right) \backslash\{0\}$ such that

$$
-h \in \overline{\mathrm{cc}}\left(\bigcup_{s=0}^{k} N_{s}\right)
$$

Given a subscript set Λ, and for each $\lambda \in \Lambda$ a real number d_{λ} and a vector $h_{\lambda} \in \Phi_{n} \backslash\{0\}$, we say that

$$
K_{\Lambda}:=\left\{q \in \Phi_{n}:\left(q, h_{\lambda}\right) \leqslant d_{\lambda}, \lambda \in \Lambda\right\}
$$

is a local convex cone at $q_{0} \in K_{A}$ if there exists a $\delta>0$ such that the δ-neighborhood of q_{0} in $\Phi_{n} O\left(q_{0}, \delta\right)$ satisfies

$$
O\left(q_{0}, \delta\right) \subset\left\{q \in \Phi_{n}:\left(q, h_{\lambda}\right) \leqslant d_{\lambda}, \lambda \in \Lambda \backslash \Lambda^{\prime}\right\}
$$

where

$$
\Lambda^{\prime}=\left\{\lambda \in \Lambda:\left(q_{0}, h_{\lambda}\right)=d_{\lambda}\right\} .
$$

Now, the first result of this paper is as follows:

Theorem 1. Assume that K_{A} is a local convex cone at $q_{0} \in K:=$ $K_{\Lambda} \cap K_{S}, f \in C(\mathscr{X}) \backslash K, K_{q_{0}}^{\infty} \neq \varnothing$. If

$$
\begin{equation*}
\operatorname{ri}\left(K_{\Lambda}\right) \cap\left[\bigcap_{s=0}^{k} \operatorname{ri}\left(K_{s}\right)\right] \neq \varnothing \tag{5}
\end{equation*}
$$

then q_{0} is a best uniform approximation to f from K if and only if there exists a vector $h \in \operatorname{cc}\left(N_{q_{0}}\right) \backslash\{0\}$ such that

$$
\begin{equation*}
-h \in \overline{\operatorname{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\} \cup\left(\bigcup_{s=0}^{k} N_{s}\right)\right) \tag{6}
\end{equation*}
$$

And if in addition Λ^{\prime} is a finite set, then (6) can be substituted by

$$
-h \in \operatorname{cc}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\} \cup\left(\bigcup_{s=0}^{k} N_{s}\right)\right) .
$$

Theorem 1 improves Theorem A in two respects. First, it allows us to add some linear constraints (i.e., $\left.\left(q, h_{\lambda}\right) \leqslant d_{\lambda}\right)$ to the coefficients of q in K. For example, the set of generalized polynomials with bounded coefficients $\left\{q=\sum_{i=1}^{n} a_{i} \varphi_{i}: \alpha_{i} \leqslant a_{i} \leqslant \beta_{i}, i=1, \ldots, n\right\}$ is a special case of K_{4}. Second,
 precise in formulation and more valuable in applications.

The second result of the paper is a similar characterization theorem of a best approximation in the L_{p} norm $(1 \leqslant p<+\infty)$:

Theorem 2. Assume that K_{A} is a local convex cone at $q_{0} \in K=K_{A} \cap K_{S}$, $f \in L_{p} \backslash K, 1 \leqslant p<+\infty, K_{q_{0}}^{p} \neq \varnothing$, and (5) holds. If mes $Z\left(f-q_{0}\right)=0$ when $p=1$, where mes $Z\left(f-q_{0}\right)$ is the measure of the set

$$
Z\left(f-q_{0}\right)=\left\{x \in[a, b]: f(x)-q_{0}(x)=0\right\},
$$

then q_{0} is a best L_{p} approximation to f from K if and only if

$$
\begin{equation*}
\left(c_{1}, \ldots, c_{n}\right) \in \overline{\operatorname{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\} \cup\left(\bigcup_{s=0}^{k} N_{s}\right)\right) \tag{7}
\end{equation*}
$$

where

$$
c_{i}=\int_{a}^{b} \varphi_{i}\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x, \quad i=1, \ldots, n .
$$

And if in addition Λ^{\prime} is a finite set, then (7) can be substituted by

$$
\left(c_{1}, \ldots, c_{n}\right) \in \operatorname{cc}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\} \cup\left(\bigcup_{s=0}^{k} N_{s}\right)\right) .
$$

3. PROOF OF THEOREM 1

If we apply Theorem (6.9.7) in [11] to the case being discussed here, then the theorem can be rewritten as

Lemma A. Assume that $K \subset \Phi_{n}$ is a closed convex set, $q_{0} \in K$. If $f \in C(\mathscr{X}) \backslash K$ and $K_{q_{0}}^{\infty} \neq \varnothing\left(\right.$ or $f \in L_{p}[a, b] \backslash K, 1 \leqslant p<+\infty$, and $\left.K_{q_{0}}^{p} \neq \varnothing\right)$, then q_{0} is a best approximation to f from K in uniform norm (or L_{p} norm) if and only if there exists a vector $h \in\left(K_{q_{0}}^{\infty}-q_{0}\right)^{\circ} \backslash\{0\}\left(\operatorname{or}\left(K_{q_{0}}^{p}-q_{0}\right)^{\circ} \backslash\{0\}\right)$ such that $-h \in\left(K-q_{0}\right)^{\circ}$.

Now we restate Proposition (6.9.2) in [11] and Lemmas 3 and 4 in [1] as follows:

Lemma B. If $A \subset \Phi_{n}$, then

$$
A^{\circ \circ}=\overline{\mathrm{cc}}(A)
$$

And if A is a convex compact set not containing the origin, then

$$
A^{\circ \circ}=\operatorname{cc}(A)
$$

Lemma C. For $s=0, \ldots, k$, we have

$$
\left(K_{s}-q_{0}\right)^{\circ}=\overline{\mathrm{cc}}\left(N_{s}\right) .
$$

Lemma D. If $f \in C(\mathscr{X}), q_{0} \in \Phi_{n}$, and $K_{q_{0}}^{\infty} \neq \varnothing$, then

$$
\left(K_{q_{0}}^{\infty}-q_{0}\right)^{\circ}=\operatorname{cc}\left(N_{q_{0}}\right)
$$

Lemma 1. Assume $C_{i}, i=0,1, \ldots, m$, are closed convex subsets of Φ_{n}, $0 \in \bigcap_{i=0}^{m} C_{i}$ and $\bigcap_{i=0}^{m} \operatorname{ri}\left(C_{i}\right) \neq \varnothing$, then

$$
\left(\bigcap_{i=0}^{m} C_{i}\right)^{\circ}=\operatorname{cc}\left(\bigcup_{i=0}^{m} C_{i}^{\circ}\right)
$$

Proof. Since $\left(C_{0}\right)^{\circ}=\operatorname{cc}\left(C^{\circ}\right)_{0}$, we can assume inductively

$$
\left(\bigcap_{i=0}^{l-1} C_{i}\right)^{\circ}=\operatorname{cc}\left(\bigcap_{i=0}^{l-1} C_{i}^{\circ}\right)
$$

We will now prove

$$
\left(\bigcap_{i=0}^{l} C_{i}\right)^{\circ}=\operatorname{cc}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)
$$

Take $g_{0} \in \bigcap_{i=0}^{m} \operatorname{ri}\left(C_{i}\right)$. For $j=0, \ldots, l$, by $C_{j}^{\circ} \subset \overline{\operatorname{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)$, the definition of $(\bullet)^{\circ}$, and Lemma B we get

$$
\left(\overline{\mathrm{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ} \subset C_{j}^{\circ \circ}=\overline{\mathrm{cc}}\left(C_{j}\right) .
$$

So for any $g \in\left(\overline{\operatorname{cc}}\left(\cup_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ}$, by the convexity of $\operatorname{cc}\left(C_{j}\right)$ we see that for any $\lambda \in(0,1)$

$$
g_{\lambda}:=\lambda g+(1-\lambda) g_{0} \in \operatorname{cc}\left(C_{j}\right), \quad j=0,1, \ldots, l .
$$

Since $0 \in \bigcap_{i=0}^{m} C_{i}$, there exists an $\varepsilon>0$ such that $\varepsilon g_{\lambda} \in \bigcap_{i=0}^{l} C_{i}$. So $g_{\lambda} \in \operatorname{cc}\left(\bigcap_{i=0}^{l} C_{i}\right)$ and hence $g \in \overline{\operatorname{cc}}\left(\bigcap_{i=0}^{l} C_{i}\right)$. So

$$
\left(\overline{\mathrm{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ} \subset \overline{\mathrm{cc}}\left(\bigcap_{i=0}^{l} C_{i}\right) .
$$

On the other hand, for any $g \in \overline{\operatorname{cc}}\left(\bigcap_{i=0}^{l} C_{i}\right)$, based on Lemma B we have $g \in \overline{\operatorname{cc}}\left(C_{j}\right)=C_{j}^{\circ \circ}, j=0,1, \ldots, l$. So by the definition of $(\bullet)^{\circ}$ we get $g \in\left(\overline{\operatorname{cc}}\left(\cup_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ}$. Then

$$
\left(\overline{\mathrm{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ}=\overline{\mathrm{cc}}\left(\bigcap_{i=0}^{l} C_{i}\right)
$$

Combined with Lemma B we get

$$
\begin{aligned}
\left(\bigcap_{i=0}^{l} C_{i}\right)^{\circ} & =\left(\overline{\mathrm{cc}}\left(\bigcap_{i=0}^{l} C_{i}\right)\right)^{\circ}=\left(\overline{\mathrm{cc}}\left(\bigcap_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ \circ} \\
& =\overline{\mathrm{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right) .
\end{aligned}
$$

Now to complete the proof it is sufficient to show

$$
\overline{\mathrm{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)=\mathrm{cc}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right) .
$$

Write $\Psi=\operatorname{span}\left(\bigcap_{i=0}^{l-1} C_{i}\right)$. For any $g \in \overline{\operatorname{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)$, there exist $h_{j} \in \operatorname{cc}\left(\cup_{i=0}^{l} C_{i}^{\circ}\right), j=1,2, \ldots$, such that

$$
h_{j} \rightarrow g \quad(j \rightarrow \infty) .
$$

Let

$$
h_{j}=h_{1 j}+h_{2 j}+h_{3 j}+h_{4 j},
$$

where

$$
\begin{gather*}
h_{1 j}+h_{2 j} \in \operatorname{cc}\left(\bigcup_{i=0}^{l-1} C_{i}^{\circ}\right)=\left(\bigcap_{i=0}^{l-1} C_{i}\right)^{\circ}, \tag{8}\\
h_{3 j}+h_{4 j} \in \operatorname{cc}\left(C_{l}^{\circ}\right)=C_{l}^{\circ}, \\
\left\{\begin{array}{l}
h_{1 j}, h_{3 j} \in \Psi+\operatorname{span} C_{l}, \\
h_{2 j}, h_{4 j} \perp \Psi+\operatorname{span} C_{l} .
\end{array}\right. \tag{9}
\end{gather*}
$$

From the boundedness of $\left\{h_{j}\right\}$ we see that $\left\{h_{2 j}+h_{4 j}\right\}$ is bounded. So there exists a subsequence of $\left\{h_{2 j}+h_{4 j}\right\}$ (we still denote it by $\left\{h_{2 j}+h_{4 j}\right\}$ for convenience) and a $g_{2} \perp \Psi+\operatorname{span} C_{l}$ such that when $j \rightarrow \infty$

$$
\begin{equation*}
h_{2 j}+h_{4 j} \rightarrow g_{2} \in C_{l}^{\circ} \tag{10}
\end{equation*}
$$

Since $\left(h_{2 j}, \bar{g}\right)=0$ for any $\bar{g} \in \Psi$, by (8) we have

$$
\begin{equation*}
h_{1 j}=\left(h_{1 j}+h_{2 j}\right)-h_{2 j} \in\left(\bigcap_{i=0}^{l-1} C_{i}\right)^{\circ} \tag{11}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
h_{3 j} \in C_{l}^{\circ} . \tag{12}
\end{equation*}
$$

Assume that $\left\{\left|h_{1 j}\right|\right\}$ is unbounded, then $\left\{h_{1 j} /\left|h_{1 j}\right|\right\}$ has a subsequence which converges to an $h \neq 0$. And by the boundedness of $\left\{h_{1 j}+h_{3 j}\right\}$ we see that $\left\{h_{3 j} /\left|h_{1 j}\right|\right\}$ converges to $-h$. Thus by (9), (11), and (12)

$$
\left\{\begin{array}{l}
h \in\left(\Psi+\operatorname{span} C_{l}\right) \cap\left(\bigcap_{i=0}^{l-1} C_{i}\right)^{\circ} \tag{13}\\
-h \in C_{l}^{\circ}
\end{array}\right.
$$

For $g_{0} \in \bigcap_{i=0}^{m} \mathrm{ri}\left(C_{i}\right)$ and any $\bar{g} \in \Psi$ there exists an $\varepsilon>0$ such that $g_{0} \pm \varepsilon \bar{g} \in \bigcap_{i=0}^{l-1} C_{i}$. So $\left(g_{0} \pm \varepsilon \bar{g}, h\right) \leqslant 0$. Since (13) implies $\left(g_{0}, \pm h\right) \leqslant 0$, hence $\left(g_{0}, h\right)=0$, we have $(\bar{g}, h)=0$. Similarly, $(\overline{\bar{g}}, h)=0$ for any $\overline{\bar{g}} \in \operatorname{span} C_{l}$. Then $h \perp\left(\Psi+\operatorname{span} C_{l}\right)$ which contradicts (13). Now we see that $\left\{\left|h_{1 j}\right|\right\}$ is bounded and hence $\left\{\left|h_{3 j}\right|\right\}$ is bounded too. So by (11) and (12) there exist g_{1} and g_{3} such that

$$
h_{1 j} \rightarrow g_{1} \in\left(\bigcap_{i=0}^{l-1} C_{i}\right)^{\circ}, \quad h_{3 j} \rightarrow g_{3} \in C_{l}^{\circ}
$$

(taking subsequences if necessary) when $j \rightarrow \infty$. Thus by (10) and the inductive assumption we have

$$
g=g_{1}+g_{2}+g_{3} \in \operatorname{cc}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right) .
$$

Lemma 2. For each $s=0,1, \ldots, k$, if

$$
\delta_{s}=\inf \left\{\left|x_{1}-x_{2}\right|: x_{1}, x_{2} \in X_{s}^{*}, x_{1} \neq x_{2}\right\},
$$

then for any $x \in X_{s}^{*}$ there exists a positive $\delta_{0}<\delta_{s}$ such that
$\left(x, x+\delta_{0}\right] \cap X_{s}^{\prime}=\varnothing \quad$ or $\quad \sigma_{s}(\xi)=\sigma_{s}(x), \quad \xi \in\left(x, x+\delta_{0}\right] \cap X_{s}^{\prime}$,
and
$\left[x-\delta_{0}, x\right) \cap X_{s}^{\prime}=\varnothing$ or $\sigma_{s}(\xi)=(-1)^{t_{s}(x)} \sigma_{s}(x), \quad \xi \in\left[x-\delta_{0}, x\right) \cap X_{s}^{\prime}$.
Proof. Because for any $q \in K_{s}$ we have $q^{(s)}(x)=q_{0}^{(s)}(x), x \in X_{s}^{*}$, by (3) and the definition of the extended Chebyshev system we conclude that X_{s}^{*} is a finite set and hence $\delta_{s}>0$.

Assume $(x, x+\delta] \cap X_{s}^{\prime} \neq \varnothing$ for any positive $\delta<\delta_{s}$.
If for any positive $\delta<\delta_{s}$ there exists $\xi, \eta \in(x, x+\delta] \cap X_{s}^{\prime}$ such that $\sigma_{s}(\xi)=1, \sigma_{s}(\eta)=-1$, then there exist two sequences $\left\{\xi_{i}\right\}$ and $\left\{\eta_{i}\right\}$ such that $\xi_{i}, \eta_{i} \rightarrow x+0(i \rightarrow \infty)$ and

$$
\left\{\begin{array}{l}
d\left(q_{0}^{(s)}\left(\xi_{i}\right), l_{s}\right)=0, \\
d\left(q_{0}^{(s)}\left(\xi_{i}\right), u_{s}\right)=0,
\end{array} \quad i=1,2, \ldots\right.
$$

So for any $q \in K_{s}$ we have

$$
\left\{\begin{array}{l}
q^{(s)}\left(\xi_{i}\right)-q_{0}^{(s)}\left(\xi_{i}\right) \geqslant 0, \\
q^{(s)}\left(\eta_{i}\right)-q_{0}^{(s)}\left(\eta_{i}\right) \leqslant 0,
\end{array} \quad i=1,2, \ldots,\right.
$$

which implies that $q^{(s)}-q_{0}^{(s)} \equiv 0$ by the definition of the extended Chebyshev system. This contradicts the hypothesis of (3). Now we see that there exists a positive $\delta_{0}<\delta_{s}$ such that $\sigma_{s}(\xi) \equiv$ constant for any $\xi \in\left(x, x+\delta_{0}\right] \cap X_{s}^{\prime}$. Without loss of generality, we assume that the constant equals 1 . So there exists a sequence $\left\{\xi_{i}\right\}$ with $\xi_{i} \rightarrow x+0(i \rightarrow \infty)$ and $d\left(q_{0}^{(s)}\left(\xi_{i}\right), l_{s}\right)=0$. Then by the definition we get directly $t_{s, 1,-1}(x)=\infty$ and $\sigma_{s}(x)=1$ which implies (14). The proof of (15) is similar.

Lemma 3. For $0 \leqslant s \leqslant k, x \in X_{s}^{*}$, if there is a positive $\delta_{0}<\delta_{s}$ that satisfies (14) and (15), then

$$
\left(H-q_{0}\right)^{\circ}=\operatorname{cc}(M),
$$

where

$$
\begin{align*}
H= & \left\{q \in \Phi_{n}: l_{s}(x) \leqslant q^{(s)}(x) \leqslant u_{s}(x), x \in\left[x-\delta_{0}, x+\delta_{0}\right]\right\}, \tag{16}\\
M= & \left\{ \pm \hat{x}^{(s+j)}: j=0,1, \ldots, t_{s}(x)-1\right\} \\
& \cup\left\{-\sigma_{s}(\xi) \hat{\xi}^{\left(s+t_{s}(\xi)\right)}: \xi \in\left[x-\delta_{0}, x+\delta_{0}\right] \cap\left(X_{s}^{\prime} \cup X_{s}^{\prime \prime}\right)\right\} . \tag{17}
\end{align*}
$$

Proof. By $\varphi_{i}^{(s)}\left[x_{0}, x_{1}, \ldots, x_{j}\right]$ we denoted the difference quotient of the j th order of $\varphi_{i}^{(s)}$. Write

$$
\left[\widehat{x_{0}, x_{1}, \ldots, x_{j}}\right]^{(s)}=\left(\varphi_{1}^{(s)}\left[x_{0}, \ldots, x_{j}\right], \ldots, \varphi_{n}^{(s)}\left[x_{0}, \ldots, x_{j}\right]\right) .
$$

Based on the well-known property of the difference quotient with coalescent knots we have

$$
\begin{equation*}
[\widehat{\underbrace{x, \ldots, x}_{j+1}}]^{(s)}=\frac{1}{j!} \hat{x}^{(s+j)} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{x_{j}-x}\{[\underbrace{\overline{x, \ldots, x}, x_{j}}_{j-1}]^{(s)}-\frac{1}{(j-1)!} \hat{x}^{(s+j-1)}\}=[\underbrace{\overline{x, \ldots, x,} x_{j}}_{j}]^{(s)} . \tag{19}
\end{equation*}
$$

Write $t_{s}(x)$ as t for convenience. Since Lemma C implies $\left(H-q_{0}\right)^{\circ}=$ $\overline{\mathrm{cc}}(M)$, it is sufficient to prove that $h \in \mathrm{cc}(M)$ if $h \in \overline{\mathrm{cc}}(M)$.

If $h=0$, then $h \in \operatorname{cc}(M)$ clearly. Otherwise, there exist $h_{i} \neq 0, i=1,2, \ldots$, such that $h_{i} \in \operatorname{cc}(M)$ and

$$
h_{i} \rightarrow h \quad(i \rightarrow \infty) .
$$

(i) Provided $x \in X_{s}^{\prime \prime}$, let $\sigma=\sigma_{s}(x)$. Since by the definition of t_{s} we have $t_{s}(\xi)=0$ for any $\xi \in X_{s}^{\prime}$, from the Carathéodory theorem we can write

$$
\begin{equation*}
h_{i}=\sum_{j=0}^{t} \theta_{i j} \hat{x}^{(s+j)}+\sum_{j=t+1}^{t+m_{j}} \theta_{i j} \hat{x}_{i j}^{(s)}, \tag{20}
\end{equation*}
$$

where $0 \leqslant m_{i} \leqslant n+1, x_{i j} \in\left[x-\delta_{0}, x+\delta_{0}\right] \cap X_{s}^{\prime}$, and

$$
\left\{\begin{array}{l}
-\sigma \theta_{i t} \geqslant 0, \tag{21}\\
-\delta_{s}\left(x_{i j}\right) \theta_{i j}>0, \quad j=t+1, \ldots, t+m_{i} .
\end{array}\right.
$$

Take a subsequence of $\left\{h_{i}\right\}$ if necessary (still denoted by $\left\{h_{i}\right\}$) such that m_{i} equals a constant m (clearly, $0 \leqslant m \leqslant n+1$); for each $j=t+1, \ldots, t+m$, $\sigma_{s}\left(x_{i j}\right)(i=1,2, \ldots)$ is a constant; and there exists an x_{j} such that $x_{i j} \rightarrow x_{j}$ $(i \rightarrow \infty)$. Then from (21), (14), and (15) we have

$$
\begin{cases}-\sigma_{s}\left(x_{j}\right) \theta_{i j}>0, & \text { if } j \in J_{0}:=\left\{j: x_{j} \neq x, j=t+1, \ldots, t+m\right\}, \tag{22}\\ -\sigma \theta_{i j}>0, & \text { if } j \in J:=\left\{j: x_{j}=x, j=t+1, \ldots, t+m\right\} \text { and } x_{i j}>x, \\ -(-1)^{t} \sigma \theta>0 & \text { if } i \in J=\{i \cdot x=x, j=t+1\end{cases}
$$

Let

$$
\left\{\begin{array}{ll}
\theta_{i j}^{\prime}=\theta_{i j}, & j \in J_{0} \text { or } j=t, \tag{23}\\
\theta_{i l}^{\prime}=\theta_{i l}+\frac{1}{l!} \sum_{j \in J} \theta_{i j}\left(x_{i j}-x\right)^{l}, & \\
\theta_{i j}^{\prime}=\theta_{i j}\left(x_{i j}-x\right)^{t}, &
\end{array}, t-1, \quad j \in J ., ~\right.
$$

Since (19) implies

$$
\begin{aligned}
\hat{x}_{i j}^{(s)}-\sum_{l=0}^{t-1}\left(x_{i j}-x\right)^{l} \frac{1}{l!} \hat{x}^{(s+l)} & =\left(x_{i j}-x\right)\left[\widehat{x, x_{i j}}{ }^{(s)}-\sum_{l=1}^{t-1}\left(x_{i j}-x\right)^{l} \frac{1}{l!} \hat{x}^{(s+l)}\right. \\
& =\left(x_{i j}-x\right)^{2}\left[\widehat{x, x, x_{i j}}\right]^{(s)}-\sum_{l=2}^{t-1}\left(x_{i j}-x\right)^{l} \frac{1}{l!} \hat{x}^{(s+l)} \\
& =\cdots \\
& =\left(x_{i j}-x\right)^{t}[\underbrace{\widehat{x, \ldots, x,} x_{i j}}_{t}]^{(s)},
\end{aligned}
$$

we can rewrite h_{i} as

$$
h_{i}=\sum_{j=0}^{t} \theta_{i j}^{\prime} \hat{x}^{(s+j)}+\sum_{j \in J} \theta_{i j}^{\prime}[\underbrace{\overline{x, \ldots, x,} x_{i j}}_{t}]^{(s)}+\sum_{j \in J_{0}} \theta_{i j}^{\prime} \hat{x}_{i j}^{(s)} .
$$

Now we shall prove that the sequence $\left\{A_{j}\right\}, A_{i}:=\max _{j=0, \ldots, t+m}\left|\theta_{i j}^{\prime}\right|$, is bounded. In fact, otherwise $\left\{A_{i}\right\}$ (or its subsequence) satisfies $A_{i} \rightarrow+\infty$
$(i \rightarrow \infty) ; \theta_{i j}^{\prime} / A_{i}$ has a limit θ_{j}; and at least one of $\left\{\theta_{j}\right\}_{j=0}^{t+m}$ does not equal zero. Since $\lim _{i \rightarrow \infty} h_{i} / A_{i}=0$, by (18) we see that zero equals

$$
\begin{equation*}
\sum_{j=0}^{t-1} \theta_{j} \hat{x}^{(s+j)}+\left(\theta_{t}+\frac{1}{t!} \sum_{j \in J} \theta_{j}\right) \hat{x}^{(s+t)}+\sum_{j \in J_{0}} \theta_{j} \hat{x}_{j}^{(s)}, \tag{24}
\end{equation*}
$$

and (21)-(23) imply

$$
\begin{cases}-\sigma \theta_{t} \geqslant 0, & \tag{25}\\ -\sigma \theta_{j} \geqslant 0, & j \in J, \\ -\sigma_{s}\left(x_{j}\right) \theta_{j} \geqslant 0, & j \in J_{0} .\end{cases}
$$

Because the definition of extended Chebyshev system of order r_{s} and the hypothesis $t \leqslant r_{s}$ imply that $\left\{\hat{x}^{(s+j)}\right\}_{j=0}^{t=1}$ are linearly independent, therefore at least one of θ_{j} 's $(j=t, \ldots, t+m)$ does not equal zero. Based on Lemma 5 of [4] (substituted Φ_{n} by $\operatorname{span}\left\{\varphi_{1}^{(s)}, \ldots, \varphi_{n}^{(s)}\right\}$), there exists a $q \in K_{s}$ such that

$$
\left\{\begin{array}{l}
q^{(s+j)}(x)=0, \quad j=0, \ldots, t-1, \\
\sigma q^{(s+t)}(x)>0, \\
\sigma_{s}\left(x_{j}\right) q^{(s)}\left(x_{j}\right)>0 .
\end{array}\right.
$$

So by (24) and (25) we have

$$
\begin{aligned}
0 & =(0, q) \\
& =\sum_{j=0}^{t-1} \theta_{j} q^{(s+j)}(x)+\left[\theta_{t}+\frac{1}{t!} \sum_{j \in J} \theta_{j}\right] q^{(s+t)}(x)+\sum_{j \in J_{0}} \theta_{j} q^{(s)}\left(x_{j}\right)<0,
\end{aligned}
$$

which is a contradiction. Thus A_{i} is bounded.
Now, if we write the limit of $\theta_{i j}^{\prime}$ as θ_{j}, then $h=\lim _{i \rightarrow \infty} h_{i}$ still has the form of (24). And by (25) we have $h \in \mathrm{cc}$ (M).
(ii) If $x \notin X_{s}^{\prime \prime}$, then $\left[x-\delta_{0}, x+\delta_{0}\right] \cap X_{s}^{\prime}=\varnothing$. So in (20) we have $m_{i}=0$ and $\theta_{i t}=0$. Let $A_{i}=\max _{j=0, \ldots, t-1}\left|\theta_{i j}\right|$. Then from the linear independence of $\left\{\hat{x}^{(s+j)}\right\}_{j=0}^{t-1}$ it is not difficult to see that $\left\{A_{i}\right\}$ is bounded. So $h=\lim _{i \rightarrow \infty} h_{i} \in \operatorname{cc}(\mathrm{M})$.

Lemma 4. For each $s=1, \ldots, k$,

$$
\begin{equation*}
\left(K_{s}-q_{0}\right)^{\circ}=\operatorname{cc}\left(N_{s}\right) . \tag{26}
\end{equation*}
$$

Proof. Assume that $X_{s}^{*}=\left\{x_{1}, \ldots, x_{m}\right\}$. By Lemma 2 there exists a positive $\delta_{0}<\delta_{s}$ such that (14) and (15) hold for every $x \in X_{s}^{*}$. Write

$$
\begin{aligned}
H_{0} & =\left\{q \in \Phi_{n}: l_{s}(x) \leqslant q^{(s)}(x) \leqslant u_{s}(x), s \in[a, b] \backslash O\left(X_{s}^{*}, \delta_{0}\right)\right\}, \\
M_{0} & =\left\{-\sigma_{s}(x) \hat{x}^{(s)}: x \in X_{s}^{\prime} \backslash O\left(X_{s}^{*}, \delta_{0}\right)\right\} .
\end{aligned}
$$

For each $i=1, \ldots, m$, by H_{i} and M_{i} we denote respectively the sets of (16) and (17) with x substituted by x_{i}. Then

$$
\begin{aligned}
K_{s} & =\bigcap_{i=0}^{m} H_{i} \\
N_{s} & =\bigcup_{i=0}^{m} M_{i} \\
\left(H_{i}-q_{0}\right)^{\circ} & =\operatorname{cc}\left(M_{i}\right), \quad i=1, \ldots, m
\end{aligned}
$$

Suppose

$$
\begin{equation*}
\left(H_{0}-q_{0}\right)^{\circ}=\operatorname{cc}\left(M_{0}\right) . \tag{27}
\end{equation*}
$$

If by Lemma 5 in [4] we take a $q \in K_{s}$ such that

$$
\begin{cases}q^{(s+j)}\left(x_{i}\right)=0, & j=0,1, \ldots, t_{s}\left(x_{i}\right)-1, \quad i=1, \ldots, m, \tag{28}\\ \sigma_{s}(\xi) q^{\left(s+t_{s}(\xi)\right.}(\xi)>0, & \xi \in X_{s}^{\prime} \cup X_{s}^{\prime \prime},\end{cases}
$$

then it is clear that

$$
\frac{1}{2}\left(q-q_{0}\right) \in \bigcap_{i=0}^{m} \mathrm{ri}\left(H_{i}\right),
$$

and by Lemma 1 we have

$$
\left(K_{s}-q_{0}\right)^{\circ}=\left[\bigcap_{i=0}^{m}\left(H_{i}-q_{0}\right)\right]^{\circ}=\operatorname{cc}\left(\bigcup_{i=0}^{m}\left(H_{i}-q_{0}\right)^{\circ}\right)=\operatorname{cc}\left(N_{s}\right) .
$$

Now it is sufficient to prove (27). In fact, if $0 \notin \operatorname{co}\left(M_{0}\right)$, which denotes the convex hull of M_{0}, then from Lemma B we have

$$
\overline{\mathrm{cc}}\left(\operatorname{co}\left(M_{0}\right)\right)=\operatorname{cc}\left(\operatorname{co}\left(M_{0}\right)\right) .
$$

So by Lemma C with K_{s} replaced by H_{0} we get (27). On the other hand, it is impossible that $0 \in \operatorname{co}\left(M_{0}\right)$ because otherwise we have

$$
\sum_{j=0}^{r} \lambda_{j} \sigma_{s}\left(\xi_{j}\right) \hat{\xi}_{j}^{(s)}=0, \quad \lambda_{j}<0, \quad \xi_{j} \in X_{s}^{\prime} \backslash O\left(X_{s}^{*}, \delta_{0}\right)
$$

and hence for the q satisfying (28)

$$
\sum_{j=0}^{r} \lambda_{j} \sigma_{s}\left(\xi_{j}\right) q^{(s)}\left(\xi_{j}\right)=(q, 0)=0
$$

which contradicts the second inequality of (28).

Lemma 5. If $K_{A} \subset \Phi_{n}$ is a local convex cone at $q_{0} \in K_{A}$, then

$$
\left(K_{\Lambda}-q_{0}\right)^{\circ}=\overline{\operatorname{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\}\right) .
$$

Proof. Since $[\overline{\mathrm{cc}}(A)]^{\circ}=A^{\circ}$, by Lemma B it is sufficient to prove that

$$
\overline{\operatorname{cc}}\left(K_{\Lambda}-q_{0}\right)=\left[\overline{\mathrm{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\}\right)\right]^{\circ} .
$$

Write

$$
H_{\lambda}=\left\{q \in \Phi_{n}:\left(q, h_{\lambda}\right) \leqslant d_{\lambda}\right\} .
$$

Assume $q \in \overline{\operatorname{cc}}\left(K_{\Lambda}-q_{0}\right)$. For any $\lambda \in \Lambda^{\prime}$, it is clear that $q \in \overline{\operatorname{cc}}\left(H_{\lambda}-q_{0}\right)$ and $\left(q+q_{0}, h_{\lambda}\right) \leqslant d_{\lambda}$. So $\left(q, h_{\lambda}\right) \leqslant 0, \lambda \in \Lambda^{\prime}$, and hence

$$
q \in\left[\overline{\operatorname{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\}\right)\right]^{\circ} .
$$

On the other hand, suppose $q \notin \overline{\mathrm{cc}}\left(K_{A}-q_{0}\right)$. By the definition of a local convex cone there exists a $\delta>0$ such that

$$
\delta q \in H_{\lambda}-q_{0}, \quad \lambda \notin \Lambda^{\prime} .
$$

If

$$
\delta q \in \overline{\operatorname{cc}}\left(H_{\lambda}-q_{0}\right), \quad \lambda \in \Lambda^{\prime},
$$

then $\delta q \in K_{A}-q_{0}$ and $q \in \overline{\operatorname{cc}}\left(K_{A}-q_{0}\right)$, which contradicts the hypothesis. So there exists at least one $\lambda_{0} \in \Lambda^{\prime}$ such that $\delta q \notin \overline{\operatorname{cc}}\left(H_{\lambda_{0}}-q_{0}\right)$. So

$$
\left(\delta q, h_{\lambda_{0}}\right)>0
$$

which implies

$$
q \notin\left[\overline{\operatorname{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\}\right)\right]^{\circ} .
$$

The Proof of Theorem 1. By Lemmas 1, 4, and 5 we have

$$
\left(K-q_{0}\right)^{\circ}=\overline{\operatorname{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\} \cup\left(\bigcup_{s=0}^{k} N_{s}\right)\right) .
$$

And if in addition Λ^{\prime} is a finite set, it is clear that

$$
\overline{\operatorname{cc}}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\}\right)=\operatorname{cc}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\}\right),
$$

and hence

$$
\left(K-q_{0}\right)^{\circ}=\operatorname{cc}\left(\left\{h_{\lambda}: \lambda \in \Lambda^{\prime}\right\} \cup\left(\bigcup_{s=0}^{k} N_{s}\right)\right) .
$$

Combining this with Lemma A and Lemma D we get the conclusion of Theorem 1.

4. PROOF OF THEOREM 2

Lemma 6. If $f \in L_{p}(1 \leqslant p<+\infty), q_{0} \in \Phi_{n}, K_{q_{0}}^{p} \neq \varnothing$, and $\operatorname{mes} Z(f-$ $\left.q_{0}\right)=0$ when $p=1$, then $\left(c_{1}, \ldots, c_{n}\right) \neq 0$ and

$$
\begin{equation*}
\left(K_{q_{0}}^{p}-q_{0}\right)^{\circ}=\left\{-\eta\left(c_{1}, \ldots, c_{n}\right): \eta \geqslant 0\right\} \tag{29}
\end{equation*}
$$

where the c_{i} 's are defined below (7).
Proof. Write

$$
h_{0}=\left(c_{1}, \ldots, c_{n}\right) .
$$

Based on the characterization theorem of a best L_{p} approximation by the linear subspace Φ_{n} (see [12, Theorems 3.3.1 and 3.3.2]), we see that if $h_{0}=0$ then q_{0} is a best approximation to f from Φ_{n}, which contradicts the hypothesis of $K_{q_{0}}^{p} \neq \varnothing$. Thus $h_{0} \neq 0$.

Now, it is sufficient to prove

$$
\begin{equation*}
\overline{\operatorname{cc}}\left(K_{q_{0}}^{p}-q_{0}\right)=\left\{-h_{0}\right\}^{\circ} \tag{30}
\end{equation*}
$$

because by Lemma B it follows from (30) that

$$
\left(\overline{\mathrm{cc}}\left(K_{q_{0}}^{p}-q_{0}\right)\right)^{\circ}=\overline{\operatorname{cc}}\left(\left\{-h_{0}\right\}\right),
$$

which implies (29).
(i) For $q \in \overline{\operatorname{cc}}\left(K_{q_{0}}^{p}-q_{0}\right)$, we will prove $q \in\left\{-h_{0}\right\}^{\circ}$. Assume on the contrary that $\left(q,-h_{0}\right)>0$; then there must be a $q_{1} \in \operatorname{cc}\left(K_{q_{0}}^{p}-q_{0}\right)$ such that $\left(q_{1},-h_{0}\right)>0$. By the definition of h_{0} we get

$$
\begin{equation*}
\int_{a}^{b} q_{1}\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x<0 . \tag{31}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
\left\|f-q_{0}\right\|_{p}<\left\|f-q_{0}-\delta q_{1}\right\|_{p}, \quad \forall \delta>0 \tag{32}
\end{equation*}
$$

In fact, if $p=1$, by (31) we have

$$
\begin{aligned}
\left\|f-q_{0}\right\|_{1} & =\int_{a}^{b}\left(f-q_{0}-\delta q_{1}\right) \operatorname{sgn}\left(f-q_{0}\right) d x+\delta \int_{a}^{b} q_{1} \operatorname{sgn}\left(f-q_{0}\right) d x \\
& <\left\|f-q_{0}-\delta q_{1}\right\|_{1} .
\end{aligned}
$$

If $p>1$, then from the Hölder Inequality we have

$$
\begin{aligned}
\left\|f-q_{0}\right\|_{p}^{p}= & \int_{a}^{b}\left(f-q_{0}-\delta q_{1}\right)\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x \\
& +\delta \int_{a}^{b} q_{1}\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x \\
< & \int_{a}^{b}\left|f-q_{0}-\delta q_{1}\right|\left|f-q_{0}\right|^{p-1} d x \\
\leqslant & \left\|f-q_{0}-\delta q_{1}\right\|_{p}\left\|f-q_{0}\right\|_{p}^{p-1} .
\end{aligned}
$$

And hence

$$
\left\|f-q_{0}\right\|_{p}<\left\|f-q_{0}-\delta q_{1}\right\|_{p} \quad(p>1)
$$

Now we get (32) and hence $q_{1} \notin \operatorname{cc}\left(K_{q_{0}}^{p}-q_{0}\right)$ which is a contradiction.
(ii) If $\left(q,-h_{0}\right)<0$, then

$$
\begin{equation*}
\rho:=\left(q, h_{0}\right)=\int_{a}^{b} q\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x>0 . \tag{33}
\end{equation*}
$$

Since $q \in L_{p}$ and $\left|f-q_{0}\right|^{p-1} \in L_{p^{\prime}}\left(\right.$ where $\left.(1 / p)+\left(1 / p^{\prime}\right)=1\right),|q|\left|f-q_{0}\right|^{p-1}$ is integrable on $[a, b]$. So by Lusin's Theorem and the property of
absolute continuity of an integral there exists a closed subset F of $[a, b] \backslash Z\left(f-q_{0}\right)$ such that both $f-q_{0}$ and q are continuous on F, and the complementary set

$$
E:=[a, b] \backslash Z\left(f-q_{0}\right)-F
$$

is so small that

$$
\begin{equation*}
\int_{E}|q|\left|f-q_{0}\right|^{p-1} d x<\frac{\rho}{4\left(2^{p-1}+1\right)} . \tag{34}
\end{equation*}
$$

Clearly

$$
\begin{aligned}
\mu & :=\min _{x \in F}\left|f(x)-q_{0}(x)\right|>0, \\
M & :=\max _{x \in F}\left\{\max \left\{\left|f(x)-q_{0}(x)\right|,|q(x)|\right\}\right\}<+\infty .
\end{aligned}
$$

(a) Assume that $p=1$. Let

$$
0<\delta<\frac{\mu}{2 M} .
$$

Then for $x \in F$ we have

$$
\begin{equation*}
\operatorname{sgn}\left[f(x)-q_{0}(x)-\delta q(x)\right]=\operatorname{sgn}\left[f(x)-q_{0}(x)\right] . \tag{35}
\end{equation*}
$$

So by (34), (33), and the hypothesis of mes $Z\left(f-q_{0}\right)=0$ we see

$$
\begin{aligned}
\left\|f-q_{0}-\delta q\right\|_{1}= & \int_{E}\left|f-q_{0}-\delta q\right| d x+\int_{F}\left(f-q_{0}-\delta q\right) \operatorname{sgn}\left(f-q_{0}\right) d x \\
\leqslant & \int_{E}\left|f-q_{0}\right| d x+\delta \int_{E}|q| d x+\int_{F}\left|f-q_{0}\right| d x \\
& -\delta \int_{F} q \operatorname{sgn}\left(f-q_{0}\right) d x \\
\leqslant & \left\|f-q_{0}\right\|_{1}+2 \delta \int_{E}|q| d x-\delta \int_{E+F} q \operatorname{sgn}\left(f-q_{0}\right) d x \\
\leqslant & \left\|f-q_{0}\right\|_{1}+\frac{\delta \rho}{4}-\delta \rho<\left\|f-q_{0}\right\|_{1} .
\end{aligned}
$$

(b) Assume that $p>1$. Let

$$
\begin{aligned}
F_{+}= & \left\{x \in F: f(x)-q_{0}(x)>0\right\}, \\
F_{-}= & \left\{x \in F: f(x)-q_{0}(x)<0\right\}, \\
0<\delta< & \min \left\{\frac{\mu}{2 M}, \frac{\rho}{(p-1)(b-a) M^{2}(\mu / 2)^{p-2}},\right. \\
& \left.\frac{\rho}{(p-1)(b-a) M^{2}(2 M)^{p-2}},\left(\frac{\rho}{4 \cdot 2^{p-1}\|q\|_{p}^{p}}\right)^{1 /(p-1)}\right\} .
\end{aligned}
$$

Then (35) holds for any $x \in F=F_{+} \cup F_{-}$. So by the Taylor Formula we have

$$
\begin{align*}
& \left|f-q_{0}-\delta q\right|^{p} \\
& \quad=\left\{\begin{aligned}
&\left(f-q_{0}\right)^{p}-\delta p q\left(f-q_{0}\right)^{p-1} \\
& \quad+\frac{1}{2} \delta^{2} p(p-1) q^{2}\left(f-q_{0}-\Delta q\right)^{p-2}, x \in F_{+}, \\
&\left(q_{0}-f\right)^{p}+\delta p q\left(q_{0}-f\right)^{p-1} \\
& \quad+\frac{1}{2} \delta^{2} p(p-1) q^{2}\left(-f+q_{0}+\Delta q\right)^{p-2}, x \in F_{-},
\end{aligned}\right. \tag{36}
\end{align*}
$$

where $\Delta=\Delta(x)$ satisfies $0<\Delta(x)<\delta$. Considering $\delta<\mu /(2 M)<1$, by the definition of μ and M we get

$$
\left|f-q_{0}-\Delta q\right|^{p-2}<\left\{\begin{array}{ll}
(\mu / 2)^{p-2}, & p<2, \\
(2 M)^{p-2}, & p \geqslant 2,
\end{array} \quad x \in F .\right.
$$

Then from the definition of δ it follows that

$$
\begin{align*}
& \frac{1}{2} \delta(p-1) \int_{F} q^{2}\left|f-q_{0}-\Delta q\right|^{p-2} d x \\
& \quad<\frac{1}{2} \delta(p-1)(b-a) M^{2} \max \left\{(\mu / 2)^{p-2},(2 M)^{p-2}\right\}<\frac{\rho}{2} . \tag{37}
\end{align*}
$$

And for $x \in E$, by the Taylor Formula we have

$$
\begin{align*}
\left|f-q_{0}-\delta q\right|^{p} & \leqslant\left[\left|f-q_{0}\right|+\delta|q|\right]^{p} \\
& =\left|f-q_{0}\right|^{p}+\delta p|q|\left(\left|f-q_{0}\right|+\Delta|q|\right)^{p-1} \\
& \leqslant\left|f-q_{0}\right|^{p}+\delta p 2^{p-1}|q|\left|f-q_{0}\right|^{p-1}+\delta p(2 \Delta)^{p-1}|q|^{p}, \tag{38}
\end{align*}
$$

where $\Delta=\Delta(x)$ satisfies $0<\Delta(x)<\delta$.

Now, from (38), (36), (37), (34), (33), and the definition of δ we have

$$
\begin{aligned}
& \left\|f-q_{0}-\delta q\right\|_{p}^{p} \\
& =\left(\int_{E}+\int_{Z\left(f-q_{0}\right)}+\int_{F}\right)\left|f-q_{0}-\delta q\right|^{p} d x \\
& \leqslant \int_{E}\left[\left|f-q_{0}\right|^{p}+\delta p 2^{p-1}|q|\left|f-q_{0}\right|^{p-1}\right] d x \\
& +\left[\delta^{p} p 2^{p-1} \int_{E}|q|^{p} d x+\delta^{p} \int_{Z\left(f-q_{0}\right)}|q|^{p} d x\right] \\
& +\int_{F_{+}}\left[\left|f-q_{0}\right|^{p}-\delta p q\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right)\right. \\
& \left.+\frac{1}{2} \delta^{2} p(p-1) q^{2}\left|f-q_{0}-\Delta q\right|^{p-2}\right] d x \\
& +\int_{F_{-}}\left[\left|f-q_{0}\right|^{p}-\delta p q\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right)\right. \\
& \left.+\frac{1}{2} \delta^{2} p(p-1) q^{2}\left|f-q_{0}-\Delta q\right|^{p-2}\right] d x \\
& \leqslant\left\|f-q_{0}\right\|_{p}^{p}+\delta p 2^{p-1} \int_{E}|q|\left|f-q_{0}\right|^{p-1} d x \\
& +\delta p \int_{E} q\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x \\
& -\delta p \int_{E} q\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left|f-q_{0}\right| d x \\
& -\delta p \int_{F} q\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x \\
& +\delta^{p} p 2^{p-1}\|q\|_{p}^{p}+\delta p \cdot \frac{1}{2} \delta(p-1) \int_{F} q^{2}\left|f-q_{0}-\Delta q\right|^{p-2} d x \\
& \leqslant\left\|f-q_{0}\right\|_{p}^{p}+\delta p\left(2^{p-1}+1\right) \int_{E}|q|\left|f-q_{0}\right|^{p-1} d x \\
& -\delta p \int_{a}^{b} q\left|f-q_{0}\right|^{p-1} \operatorname{sgn}\left(f-q_{0}\right) d x+\delta p \delta^{p-1} 2^{p-1}\|q\|_{p}^{p}+\delta p \frac{\rho}{2} \\
& <\left\|f-q_{0}\right\|_{p}^{p}+\delta p \frac{\rho}{4}-\delta p \rho+\delta p \frac{\rho}{4}+\delta p \frac{\rho}{2} \\
& =\left\|f-q_{0}\right\|_{p}^{p} .
\end{aligned}
$$

Based on (a) and (b), we see that if ($\left.q,-h_{0}\right)<0$, then there exists a $\delta>0$ such that $q_{0}+\delta q \in K_{q_{0}}^{p}$, which means $q \in \operatorname{cc}\left(K_{q_{0}}^{p}-q_{0}\right)$. So if $\left(q,-h_{0}\right) \leqslant 0$ then $q \in \overline{\mathrm{cc}}\left(K_{q_{0}}^{p}-q_{0}\right)$, which is

$$
\left\{-h_{0}\right\}^{\circ} \subset \operatorname{cc}\left(K_{q_{0}}^{p}-q_{0}\right) .
$$

Combining (i) with (ii) we obtain (30), and the lemma is established.
Note. If we omit the condition that mes $Z\left(f-q_{0}\right)=0$ when $p=1$, then (29) may be false. A counterexample is as follows: Let $[a, b]=[-1,1]$;
$f(x)=\left\{\begin{array}{ll}1, & x \geqslant 0, \\ 0, & x<0 ;\end{array} \quad n=2 ; \quad \Phi_{n}=\operatorname{span}(1, x), \quad\right.$ and $\quad q_{0}(x) \equiv 0$.
Then $K_{q_{0}}^{1} \neq \varnothing$ since $\left\|f-q_{0}\right\|_{1}=1$, and $\|f-((1 / 2)+(x / 2))\|_{1}<1$. For any $q=a_{1}+a_{2} x$ with $a_{1}<0$, by drawing a diagram we can find that $\|f-q\|_{1}>1$. So

$$
a_{1} \geqslant 0, \quad \text { if } \quad q \in K_{q_{0}}^{1} .
$$

Now let $q_{1}=(-1,0)$. Then for any $q \in K_{q_{0}}^{1}$ we have $\left(q, q_{1}\right) \leqslant 0$. So

$$
q_{1} \in\left(K_{q_{0}}^{1}\right)^{\circ}=\left(K_{q_{0}}^{1}-q_{0}\right)^{\circ} .
$$

But $q_{1} \notin\left\{-\eta\left(c_{1}, c_{2}\right): \eta \geqslant 0\right\}$ since $c_{2}=\int_{-1}^{1} x \operatorname{sgn}\left(f-q_{0}\right) d x=1 / 2$.
Proof of Theorem 2. The proof is similar to that of Theorem 1 in which one uses Lemma D instead of Lemma 6.

ACKNOWLEDGMENT

The author is grateful to the referees for their valuable corrections and suggestions, which helped in the revision of the manuscript.

REFERENCES

1. S. S. Xu, Characterization of best uniform approximation with restricted ranges of derivatives, Approx. Theory Appl. 13 (1997), 37-48.
2. G. D. Taylor, Approximation by functions having restricted ranges, III, J. Math. Anal. Appl. 27 (1969), 241-248.
3. Y. K. Shih, Best approximation having restricted ranges with nodes, J. Comput. Math. $\mathbf{2}$ (1980), 124-132 [in Chinese].
4. S. S. Xu, A characterization of best approximation with restricted ranges, J. Approx. Theory 71 (1992), 193-212.
5. J. Zhong, Best restricted range approximation, Numer. Funct. Anal. Optim. 14 (1993), 179-194.
6. E. Passow and G. D. Taylor, An alternation theory for positive approximation, J. Approx. Theory 19 (1977), 123-134.
7. Y. K. Shih, An alternation theorem for copositive approximation, Acta Math. Sinica 24, No. 3 (1981), 409-414 [in Chinese].
8. J. Zhong, On the characterization and strong uniqueness of best copositive approximation, J. Comput. Math. 10 (1988), 86-93 [in Chinese].
9. J. Zhong, Best copositive approximation, J. Approx. Theory 72 (1993), 210-233.
10. S. J. Karlin and W. J. Studden, "Tchebycheff Systems: with Applications in Analysis and Statistics," Interscience, New York, 1966.
11. P. J. Laurent, "Approximation et Optimisation," Collection Enseignement des Sciences, Vol. 13, Hermann, Paris, 1972.
12. N. P. Korneichuk, "Ekstremal'nye zadachi teorii priblizheniya," Nauka, Moscow, 1976.
