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The paper improves the characterization theorem of a best uniform approxima-
tion by a set of generalized polynomials having restricted ranges of derivatives
obtained in an earlier paper and gives a characterization of a best approximation
with certain constraints in the L, norm (1< p < + o). These results are applicable
to many standard approximations with constraints.  © 1998 Academic Press

1. INTRODUCTION

Assume 2 < [a,b] is a compact set containing at least n+ 1 points,
&@,=span{¢,, .., ¢,} is an n-dimensional subspace of L,[a,b] with
I<p<+oo, and for a fixed nonnegative integer k, the kth derivatives
@\, .., % are continuous. For s=0, 1, .., k, assume that {¢'", .., 9"}
has a maximal linearly independent subset which is an extended.
Chebyshev system of order r, on [a, b] (see the definition in [ 10, Chap. 1,

Sect. 2], and write
K,={qe®,: 1(x)<q"(x)<u/x), xe[a, b},

where /, and u, are extended real valued functions such that —oo <
I(x) <u,(x)< +o0. Let

%
Ks= () K..
s=0

With respect to uniform approximation (i.e., p = +o0) by K,, which is
the set of generalized polynomials having restricted ranges, Taylor [2]
(1969) got a characterization theorem of a best approximation under the
hypothesis /, <u,. The investigation by Shih [3] (1980) allows /,(x;) =
uo(x;) at a set of nodes {x,}, but some strong conditions are required.
Getting rid of Shih’s strong conditions, the author [4] (1992) and Zhong
[5] (1993) independently gave the characterization theorems in forms of
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340 SHU-SHENG XU

convex hulls and alternation in the general case of /,(x) < uy(x), which con-
tains the special cases of approximation with interpolatory constraints,
one-sided approximation, and copositive approximation. As we pointed
out in [4], all the characterization theorems in [6], [7], and [8] are spe-
cial cases of the case in [4]. However, the later result of Zhong [9] (1993)
is not a special case of [4] because in order to apply it to the copositive
case, {¢,, .., »,} must be a Chebyshev system of order 2 while it is only
required to be a Chebyshev system by [9].

Recently, we [ 1] got a characterization of a best uniform approximation by
K, which has many special cases such as monotone approximation, coconvex
approximation, multiple comonotone approximation, approximation with
Hermite-Birkhoff interpolatory side conditions, and approximation by
algebraic polynomials having bounded coefficients (if 0 € [, b]), etc.

In this paper, we first improve the result of [ 1] and then give a charac-
terization theorem of a best L, (I <p< +4o0) approximation by the
product of K and a so-called “local convex cone.”

2. MAIN RESULTS

To introduce the main results of this paper, we need some notation.
For a fixed g, € K, let

d(q$(x), )= inf /(E—x)>+[1(E)—q(x)]%

¢ela, b]

and define d(¢{"(x), u,) similarly. Write the set of all the nodes of K, as
Xi={xel[a b]:dgy(x),l,)=d(q5(x), u;) =0}.
If xe[a, b), by the use of

u(&)—gf&)

lim 1
coxvo  |[E—x|T! (1)
we define an integer-valued function ¢, ; ,(x) as follows:
0, if x ¢ X* and (1) does not hold for any positive integer ¢,
1, if x e X* and (1) does not hold for any positive integer ¢,
T, if there exists a positive integer 7 < r, such that (1) holds

Iy 1,1(x)=
b fort=tbutnotfort=7+1,

ry+ 1, if (1) holds for # = r, but not for any positive integer ¢,
+ o0, if(1)holds for any positive integer ¢.
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Similarly, using

L aP@ = 1)
lim =

coxro |E—x]T!

(2)

we define ¢, | _;(x). And substituting x —0 for x40 in (1) and (2), we
define ¢, ; ,(x) and ¢, _; _,(x) respectively for xe(a, b].
Given x€[a, b], write

li zmax{min{ts, 1, 1(X), ts, 1, 71(x)}9 min{ts, —1, l(x)’ t,v, —1, 71(x)} }’

= ( _l)tia
and define

() ty+1, if there exists a vsuch that ¢, | (x), ¢, | _,.(x)>1,,
(x)=< 7 :
* ty, otherwise,

T,= max {1,(x)}.

xela, b]

Similar to the explanation for #(x) at the end of Section 3 of [4], where
t(x) coincides with 7,(x) here, we see that under the condition of (4) below
t(x) is just the minimum of the orders of the zero x of ¢, —¢, for all
choices of ¢,, ¢, € K,. So in fact ¢ (x) and T, are independent of the choices
of ¢,, and hence we call ¢ (x) the order of quasi-touch of I, and u, at x, and
T, the order of quasi-touch of [, and u, on [a, b].

In what follows we always assume that ¢, € K, unless otherwise stated,
and for each s=0, ..., k,

14" qeKj\4y"} # & (3)
and

T.<r,,

{fs(X)<rs, xeX, (4)

where X'; will be defined later.
Let

X,={xel[a, b]\X}: d(q§(x), L)) or d(q§(x), u;) =0},

(x) = 1, if xe X and d(¢$(x), [;) =0,
PWITN L, ifxe X and d(g$(x), u,) =0;

X{={xeX¥: there exist £ and v such that 7, (x)>1,(x)},

o (x)= —y(—1)Le=Dr14x) ifxeXiandr,, (x)>1,,;
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and

:((pl(x)’ () (pn(x))’
0= (), s ),
Ns: { _’__)e(s+f) . ZZO: 15 ) Zs(x)_ 13 XEX;k}

U{—0o,(x) 0 xe XL U XY

Moreover, for feC(%) or felL,[a,b] with 1<p<+o0, we write
respectively

Ko={qe®,:Ilf —ql.<lf—qoll..}
or
Kgoz{qe¢n ”f_q”p< Hf_qOHp}
And if fe C(Z), we write

X={xeZ:

() =qo(x¥)| =1f —qoll o}
and
N, =1{—sen[f(x) (x)]%:xeX}.
By letting ¢, =3%7_, a;¢, and q,=37_, b;p; be any elements of @, w

define their inner product by (q,, q,) =37_, a;b;. For any subset 4 of the
space @,,, we define

={hed,:(q,h)<0,Vge A}.
Let

cc(A) = {q tq=Y 24, q,€A, 2;=0, mis an arbitrary positive integer}

Jj=1

if A# @, and cc(4)={0} if 4=¢J. By cc(4) we denote the closure of
cc(A4). And the relatlve interior of A in @,, which we denote by ri(A4), is
defined as follows:

1i(A4)={qeaff(4):36>0, O(q, 6) naff(4) = A},
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where

affld) :={2,q,+ - + g g€ A, Ay + -+ + 4, =1}

and O(g, o) is the d-neighborhood of ¢.
Now we can restate the main result of [ 1] as follows:

THEOREM A. Assume that fe C(X)\Ks, K # . If

() ri(K,) # &

then q, is a best uniform approximation to f from Kg if and only if there
exists a vector hecc(N, )\{0} such that

k
—hecc< U NS>.
s=0
Given a subscript set 4, and for each 4 e A a real number d, and a vector
h, e ®,\{0}, we say that
K,:={qe®,:(q,h;)<d;, re A}

is a local convex cone at q,€ K, if there exists a >0 such that the
o-neighborhood of ¢, in @, O(q,, J) satisfies

O(qu 5) < {qean . (qs h/L) <d/1, AGA\A,},

where

A'={leA:(qy, h;)=d,}.

Now, the first result of this paper is as follows:

THEOREM 1. Assume that K, is a local convex cone at q,€K:=
K, nKs, fe C()\K, K. #O.If

{m K)];e@ (5)

then q, is a best uniform approximation to f from K if and only if there exists
a vector hecc(N,)\{0} such that

—hecc({hi:ie/l’}u(@O N>> (6)
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And if in addition A' is a finite set, then (6) can be substituted by
k
—hecc<{hi ched'} u< U NS>>.
s=0

Theorem 1 improves Theorem A in two respects. First, it allows us to
add some linear constraints (i.e., (¢, i,) <d,) to the coefficients of ¢ in K.
For example, the set of generalized polynomials with bounded coefficients
{¢q=>"_,a;,0;:0,<a;,<p;, i=1,..,n} is a special case of K,. Second,
when A’ is a finite set, cc(e) in (6) can be rewritten as cc(e), which is more
precise in formulation and more valuable in applications.

The second result of the paper is a similar characterization theorem of a
best approximation in the L, norm (1<p < +o0):

THEOREM 2. Assume that K , is a local convex cone at g,€ K=K ;, n K,
feL\K, 1<p<+oo, Ki # &, and (5) holds. If mes Z(f —q,) =0 when
p=1, where mes Z(f — q,) is the measure of the set

Z(f—qo)={xela b]: f(x)—q(x) =0},
then q, is a best L, approximation to f from K if and only if
K
(cl,...,cn)ecc<{h)‘:ie/1’}U<U NS>>, (7)
s=0
where

b
o= @f—aol” sen(f—go)dx,  i=1,.n.

And if in addition A' is a finite set, then (7) can be substituted by

(¢y, ..., C,)ECC <{h;_ cAed'} u(O N_Y>>.

3. PROOF OF THEOREM 1

If we apply Theorem (6.9.7) in [11] to the case being discussed here,
then the theorem can be rewritten as
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LeMMA A. Assume that K< ®, is a closed convex set, q,e€K. If
feC(XN\K and Ky # (or feL,[a,b]\K, | <p<+o0, and KI # ),
then q, is a best approximation to f from K in uniform norm (or L, norm)
if and only if there exists a vector he (K7 —q0)°\{0} (or (Kgo—qo)o\{O})
such that —he(K—q,)°.

Now we restate Proposition (6.9.2) in [11] and Lemmas 3 and 4 in [1]
as follows:

LEMMA B. If Ac®,, then
A°°=tcc(A).
And if A is a convex compact set not containing the origin, then
A°°=cc(A).
Lemma C. For s=0, .., k, we have
(K —q0)° = ().
Lemma D. If feC(%), g0 €®P,, and K;E # , then
(K —qo)° =ce(N,,).

LemMA 1. Assume C;, i=0,1, ..., m, are closed convex subsets of ®,,
0e Lo Ciand (\7_y1i(C)) # J, then

(o) ==(Y)

Proof. Since (C,)° =cc(C®),, we can assume inductively

(fe)-=(07)

We will now prove
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Take go e (7L, 1i(C,). For j=0, ..., [, by C;<=cc( I_, C?), the definition
of (#)°, and Lemma B we get

I o
<cc < U C§’>> c Cyp°=ce(C)).
i=0
So for any ge(cc(J!_, C7))°, by the convexity of cc(C,) we see that for
any 1€(0,1)
g, =g+ (1 —1) go ecc(C)), j=0,1,..,1

Since 0", C;, there exists an &>0 such that &g, e()'_,C, So
g, ecc(N_, C;) and hence gecc(N!_, C,). So

(=(0,) ==(0,5)

On the other hand, for any gecc(!_, C,), based on Lemma B we have

gecc(C)=Cr°, j=0,1,..,1 So by the definition of (e)° we get

Jj o

ge(ce(U!i_, C9))°. Then

(=(9.)) -=(05)

Combined with Lemma B we get

(e =(=(0e) ~(=(0,)

Now to complete the proof it is sufficient to show

s(f)-=(0)

Write  ¥=span(()/Z, C;). For any gecc(|!_,C?), there exist
hyecc(Ui_, C?), j=1,2, .., such that

7

hy—g  (j— o)

J

Let

hj:h1j+h2j+h3j+h4j,
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where

1—1 1—1 o
h](,-+h2jecc<U C§’>=<ﬂ C,->,
i=0

i~o (8)
hy;+hy; ece(Cy) = C7,
{hlj, hs; € ¥ +span C,, 9)
hajyhy; L W+ span C).

From the boundedness of {/,} we see that {h,;+h,,} is bounded. So there
exists a subsequence of {h,;+h,;} (we still denote it by {h,;+ h,;} for con-
venience) and a g, L ¥+ span C, such that when j — o

hy;+ha; — g5 € C5. (10)

Since (h,;, ) =0 for any ge ¥, by (8) we have

hyy=(hy, 4 hyy) —hy € (m c> (11)

Similarly
hs; € Cy. (12)
Assume that {|h,;|} is unbounded, then {A,;/|h,;|} has a subsequence

which converges to an 4 #0. And by the boundedness of {hy;+hsy,} we see
that {hs;/|h,;|} converges to —h. Thus by (9), (11), and (12)

1—1 o
he(¥+ span C,)m<ﬂ C,-> ,
i=0

—heCy.

(13)

For goe(\/L,1ri(C;) and any ge ¥ there exists an ¢>0 such that
gotege Nz Ci. So (go+eg, h)<0. Since (13) implies (g,, +4) <0,
hence (g,,h)=0, we have (g h)=0. Similarly, (g,4#)=0 for any
gespan C,. Then i L (¥ +span C,;) which contradicts (13). Now we see
that {|A,,|} is bounded and hence {|/5,|} is bounded too. So by (11) and
(12) there exist g, and g5 such that

;81 € <ﬂ C> h3j—’g3€C?
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(taking subsequences if necessary) when j— co. Thus by (10) and the
inductive assumption we have

/
g=g1+gz+gseCC<U C?>'
i=0

LemMA 2. For each s=0,1, .., k, if
O,=inf {|x, —x,| 1 xy, x, € X¥ x| #x,},
then for any x € X¥ there exists a positive d, <9, such that
(x,x+0,]n X, = or o(&)=0,x), Ce(x,x+d,]nX,, (14)
and
[x—0J0, X)nX,=F or a(&)=(—1)"Ya,(x), Ee[x—5y x)nX,. (15)
Proof. Because for any ge K, we have ¢"(x)=¢\(x), xe X*, by (3)

and the definition of the extended Chebyshev system we conclude that X
is a finite set and hence J,> 0.

Assume (x, x+0] n X\, # I for any positive d <J,.

If for any positive 0 <d, there exists &, ne(x, x+Jd]n X, such that
o(&)=1, a(n)= —1, then there exist two sequences {;} and {#,} such
that &, #; > x+0 (i > o) and

{d(qi)S)(éIL ls) = O’ i= 1 2
d(g§'(&;), u,) =0, o
So for any g € K, we have
{q(”(é) =0
q""(n;) —q5"(n,) <O, T

which implies that ¢’ —¢{’ =0 by the definition of the extended
Chebyshev system. This contradicts the hypothesis of (3). Now we see that
there exists a positive J,<d, such that o (¢)=constant for any
Ee(x,x+Jy] nX,. Without loss of generality, we assume that the con-
stant equals 1. So there exists a sequence {&,} with &; > x+0 (i— o0) and
d(g$(&,), 1,)=0. Then by the definition we get directly 7, ; _,(x)= oo and
a,(x) =1 which implies (14). The proof of (15) is similar. ||
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LemmA 3. For 0<s<k, xeX¥, if there is a positive 6,<0d, that
satisfies (14) and (15), then

(H—q)° =cc(M),
where
H={qe®,:1(x)<q"(x)<uy/x),xe[x—35y, x+3,]}, (16)
M={+20"):j=0,1,..,t(x)—1}
U{—0a,(&)E0rn@ce[x—dp, x+ 0,1 n (X, LX)} (17)

Proof. By @[ xy, x,, ..., x;,] we denoted the difference quotient of the
jth order of ¢!*). Write

[X0s X5 e X; 19 = (@[ X0, coos X 15 et @[ X0 ooy X,]).

Based on the well-known property of the difference quotient with coales-
cent knots we have

—_— 1 )
[ x, ...,x]‘”z,—'ﬁ(”” (18)
Jj+1 J:
and
NS e I oo T o x
X —x [x > X, X;] mx [x xx] (19)
1 ] ’ .1

Write #(x) as t for convenience. Since Lemma C implies (H—¢,)° =
cc(M), it is sufficient to prove that i ecc(M) if hecc(M).

If h=0, then hecc(M) clearly. Otherwise, there exist /; #0, i=1,2, ..,
such that 4; e cc(M) and

h,—h (i— o0).

(i) Provided xe X%, let 0 =0,(x). Since by the definition of ¢, we
have t(&) =0 for any e X’, from the Carathéodory theorem we can write

t+m;

‘=_Z N 2 (20)

Jj=t+1
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where 0<m,; <n+1, x;€[x—3dy, x+3J,] N X}, and
—06,>0,
g it ) (21)
—04(x;) 0;>0, j=t+1, ., t+m,.

Take a subsequence of {/,} if necessary (still denoted by {A;}) such that
m; equals a constant m (clearly, 0 <m<n+1); for each j=¢+1, .., t +m,
ox;) (i=1,2,..) is a constant; and there exists an x; such that x; — x;
(i—> o0). Then from (21), (14), and (15) we have

—oy(x;)0,;>0, if jeJo:={jix,#x, j=t+1,..,t+m},
—a0;>0, if jeJ:={jix;=x, j=t+1,..,t+m} and x; > x,
—(—=1)"a0,>0, if jeJ:={jix;=x, j=t+1, .., t+m} and x,; <x.
(22)
Let
0,=0,, jeJdyor j=t,
1
= Hi,—i-ﬁ ZJ HU(xi/«—x)l, [=0,..,t—1, (23)
je
Hi-izﬁi,(xi/—x)’, jeld.

Since (19) implies

t—1 r—1
RO T (ry— ) - R = ()= A TO = Y (v — ) 26D
i i T 14 > Mg = 14 /!
I1=0 ‘ = N

t—1

_

1
— 2 (s) i a(s+1)
=(x;—x)" [x,x,x;]° I_EQ(XU x) l!x”r

—_—
=(x;—=x)" [ X, . X, x;, ],
t

we can rewrite /; as

gt

1
h=Y 0,850+ 0%, x, 510+ Y 0,20
; ; X X, X, .

j=0

jeJ M Jj€dy

Now we shall prove that the sequence {4}, 4,:=max;_ _,,, |0}], is
bounded. In fact, otherwise {4,} (or its subsequence) satisfies 4, > + oo
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(i—0); 0};/A; has a limit 0; and at least one of {0} (X" does not equal
zero. Since lim;_, , h;/A;= O, by (18) we see that zero equals

t—1
Z Hx(‘+’)+<9 += 20, >>e<»"+')+ Y 0,5, (24)

/eJ

Jjedy
and (21)—(23) imply

—a6,=0,
— 00,0, jel, (25)
_o-s(xj) 0_/‘>Os jeJO'

Because the definition of extended Chebyshev system of order r, and the
hypothesis # <r, imply that {£**/} /1~ are linearly independent, therefore
at least one of 0,’s (j =1, ..., t +m) does not equal zero. Based on Lemma 5
of [4] (substituted @, by span{p'’, .., »"}), there exists a ¢ge K, such
that

q(s+j)(x) — 0’ ]: 0, eey t— 1,
aq" " (x) >0,
a,(x;) 4" (x;) > 0.

So by (24) and (25) we have

0=(0,¢9)

t—1 ) 1
— Z gjq(wj)(x)_i_{g[_}_t' Z 0]} q(s+t)(x)+ Z qu(s)(xj)<0,

j=0 cjed jed,

which is a contradiction. Thus 4; is bounded.
Now, if we write the limit of 0} as 0;, then h=lim,

form of (24). And by (25) we have hecc (M).
(i) If x¢ X}, then [x—Jy,x+dy] N X,=. So in (20) we have
m;=0 and 0,,=0. Let A =max;_, , 1 |0;|. Then from the linear inde-

pendence of {x‘”’ Jizgitis not difficult to see that {A4;} is bounded. So
h=1lim,_  h; ecc(M) |

h; still has the

i— oo

LEmMmA 4. For each s=1, .., k,

(K —q0)° = cc(Ny). (26)
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Proof. Assume that X}={x,,..x,}. By Lemma 2 there exists a
positive d, <d, such that (14) and (15) hold for every x € X* Write

Ho={qe®,: 1(x)<q"(x)<u,x), se[a, bI\O(X¥, 6,)},
My={—0,(x) 2 : xe X;\O(X} d,)}.

For each i=1, .., m, by H; and M, we denote respectively the sets of (16)
and (17) with x substituted by x;. Then

U M,,
(H;—q,)° =c;(M) i=1,..m
Suppose
(Hy—qo)° = cc(M). (27)
If by Lemma 5 in [4] we take a ¢ € K, such that

q(s+j)(xi) =09 J= 03 15 ) t.s‘(x[) - 1! i= la ey N,
‘ (28)
0,(&) g TE) >0, CeX[UXY,

then it is clear that

and by Lemma 1 we have
(Ks—qo)°={ N (H,»—qo)} =cc<u (H,«—qo)°>=cc<Ns).
i=0 i=0

Now it is sufficient to prove (27). In fact, if 0 ¢co(M,), which denotes
the convex hull of M, then from Lemma B we have

cc(co(M,)) =cc(co(My)).

So by Lemma C with K, replaced by H, we get (27). On the other hand,
it is impossible that 0 € co(M,) because otherwise we have

Z jo-.S(Cj é(\)_ s )Vj<09 éjeX_’S\O(X?: 50)9
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and hence for the ¢ satisfying (28)
z /"Lﬂio-.r(éi) q(Y)(éj) = (Qa 0) = 05
j=0

which contradicts the second inequality of (28). ||

Lemma 5. If K, < ®, is a local convex cone at q, € K 4, then

(Ky—qo)°=cc({h,: 2eA'}).

Proof. Since [cc(A)]° = A°, by Lemma B it is sufficient to prove that
(K 4 —qo) = [Ce({hy: Ae A'})]°.
Write
H,={qe®,:(q, h,)<d,}.

Assume g ecc(K ,— q,). For any Ae A, it is clear that g ecc(H, —¢q,) and
(qg+9q0,h;)<d,.So (¢q,h;)<0, Ae A', and hence

gel[cc({h,: Aed'})]°

On the other hand, suppose ¢ ¢ cc(K , — ¢,). By the definition of a local
convex cone there exists a J >0 such that

ogeH,—q,, Ag A
If
Sqe(H,—q,),  Aed,

then dge K ;, — g, and g ecc(K , — ¢,), which contradicts the hypothesis. So
there exists at least one 4, € A" such that dq ¢ cc(H, — q,). So

(5Q7 h/lo) > O,
which implies

gé¢lce({h,:2eA'})1° 1
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The Proof of Theorem 1. By Lemmas 1, 4, and 5 we have

(Ko = ({hy: e 4} <U v)

And if in addition A’ is a finite set, it is clear that
cc({h,:red'})y=cc({h,: Led'}),

and hence

(K—go)° =cc <{hi: red'} v <SOO NS>>.

Combining this with Lemma A and Lemma D we get the conclusion of
Theorem 1. ||

4. PROOF OF THEOREM 2
Lemma 6. If feL, (1<p<+xo), go€®,, Ky # 3, and mes Z( f —
qo) =0 when p=1, then (c,, .., c,)#0 and
(Kp 7q0 - { ’7 Cry ey Cn) : n 20}7 (29)
where the c;’s are defined below (7).
Proof. Write
hO = (Cl 5 seey Cn)'

Based on the characterization theorem of a best L, approximation by the
linear subspace @, (see [12, Theorems 3.3.1 and 3.3.2]), we see that if
ho=0 then ¢, is a best approximation to f from @&,, which contradicts the
hypothesis of K "7 . Thus A, #0.

Now, it is sufficient to prove

CC(Kh —qo)=1{ —ho}° (30)

because by Lemma B it follows from (30) that
(CC(K —qo))°=0c({ —ho}),

which implies (29).
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(i) For gecc(K) —q,), we will prove ge{ —ho}° Assume on the
contrary that (¢, —h,) > 0; then there must be a ¢, € cc(Kfl’o —¢,) such that
(¢1, —ho)>0. By the definition of &, we get

[ "1/~ 4017 sen(/—qy) dx <0. (31)

It is easy to show that

If=aol,<lf=q0—0q:l, ~ ¥5>0. (32)
In fact, if p=1, by (31) we have

b . b

1/ =gl = (f—dgo—0q,)sen(f —g0) dx+6 | g, sgn(f—qo) dx
<|f—=q0—9q: 1.
If p>1, then from the Holder Inequality we have
b
1/ =a0ll5 = (/=a0—0a.) |f =07 " sgn(f —qo) dx

b
+6 | i 1f —q0l” " sen(f —g,) dx

b
<[ 1f=q0—0a:1 1/ —gol” " dx

<||f—q0—954q:ll, Hf—%Hg_]-

And hence

If=aqoll, </ =qo—0q:ll,  (p>1).

Now we get (32) and hence ¢, ¢cc(K{1’0 —¢,) which is a contradiction.
(i) If (¢, —hy) <0, then

b
p:=(q, ho)=f q1f—qol” " sgn(f—qq,) dx>0. (33)

Since ge L, and |f—qo|” '€ L, (where (1/p)+(1/p")=1), lql |/ —qol”""
is integrable on [, b]. So by Lusin’s Theorem and the property of
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absolute continuity of an integral there exists a closed subset F of
[a, b1\Z( f — q,) such that both f — g, and ¢ are continuous on F, and the
complementary set

E:=[a,b]\Z(f—qo)— F

1s so small that

p

J, tal 1 = a0l dx < g s (34)
Clearly
JZ :=gﬂ€ig |/(x) —qo(x)[ >0,
M :=max{max{]f(x) = qo(x)|, la(x)|} } < + 0.
(a) Assume that p=1. Let
U
0<6<ﬁ/l'
Then for x e F we have
sgn[ f(x) — qo(x) —dq(x)] =sgn[ f(x) —qo(x)]. (35)

So by (34), (33), and the hypothesis of mes Z( f — ¢,) =0 we see
If =0 =gy =] 1/ ~q0—0ql dx+] (/~a0—0q) sen(f —qq) dx
<[ 1f—aoldx+5] gl dx+ [ |f—gol dx
E E F
—o | gsen(f—qo) dx
F

<=0l +20 [ lgldx—0 |  qsgn(f—qq)dx

+

op
< f—=qoll +Z_5P< If—qolli-



BEST APPROXIMATION WITH CONSTRAINTS 357
(b) Assume that p>1. Let

F,={xeF: f(x)—qq(x)>
F_o={xeF: f(x)—qq(x) <

[ u
0 <0 <min {2M (= D(b—a) MPu2)7 "

P p (p—1)
(p—1)(b—a) M>(2M)" >’ <4-2p1 |q|;:> }

Then (35) holds for any xe F=F_, U F_. So by the Taylor Formula we
have

|f—qo—0q|”
(f—q0)” —0pa(f—qo)” !
_ +30%p(p—1) ¢*(f —qo—A4q)" 2, xeFo. g6
(q0—1)" +0pg(qo— )7
+36%p(p—1)¢*(—f+qo+49)""%  xeF_,

where 4 = A(x) satisfies 0 < A4(x) <d. Considering é <u/(2M) <1, by the
definition of u and M we get

(/2)P=2, p<2,

F.
QM= pz2, O °©

1~ a0-dq172<{
Then from the definition of J it follows that

1
50p=1) [ ¢ 1f —qo—4q1” 2 dx
F

<%5(p —1)(b—a) M? max{(u/2)? 2, (2M)? 2} <§. (37)

And for x € E, by the Taylor Formula we have

lf—qo—0q|” <[|f—qol +01ql1”
=1f—=qol”+p lql(1f —qol +4 1q))" !
<|f—qol”+0p22 gl |f —qol? ™'+ p(24)7 " |q|”,
(38)

where 4 = A(x) satisfies 0 < A4(x) <9.
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Now, from (38), (36), (37), (34), (33), and the definition of § we have

1/ —a0—04l;
([ 4] ] )1r—a-dalrax
E Z(f*q()) F

<| D1 =a0l7+0p27 " gl 1f =017~ T dx

J{&szplj lg1” dx +67 | |q|1’dx}
E Z

(f—aq9)

+L [If—qol”—épq [/ =qol”" " sgn(f = qo)

1
3PP =1 ¢ 1~ a0 dgl” 2| dv

+f 1= a0l =apg 1r = ol sent s a0

1
30— 1S~ ao— A7 | dv
<If—=a0l5+p27 " | 1gl1f —q0l7 ™" d

+5qu|f—qo|"*'Sgn(f—qo)dx
~0p| a1/ —gol"~"sen |f —gol dx
~0p| g1/ ~a01”~" senl/ —go) dx
67p2r—! ) -15 —1 2 f—qo—Aq|*~*d
+d%p gl ? +dp 7 (p—1) 4 |/ —q0— 44| X
<If=gollf+0p(2" = + 1) [ gl 1/ =gl d
b p
—0p | q1f—qol” " sen(f—qo)dx+0p 6727 |7 +3p’

B—&pp—i—&pg—i—&p L

T r
<|f—=qols+op ) ) 5

=/ =ql}-
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Based on (a) and (b), we see that if (¢, —/,) <0, then there exists a 6 >0
such that g, +dqe K7, which means gecc(K] —qo). So if (g, —hy) <0
then g€ cC(Ky —qo)s which is

{ —ho}® cce(K2 —q,).
Combining (i) with (ii) we obtain (30), and the lemma is established. []

Note. If we omit the condition that mes Z( f — ¢,) =0 when p =1, then
(29) may be false. A counterexample is as follows: Let [a,b]=[—1,17;

L x>0,
f(x)={’ Y202 e =span(lx), and  gol(x)

0.
0, x<0;

Then K“IO;AQ since || f—qol;=1, and | f—((1/2)+(x/2))|; <1. For
any g=a,+a,x with a, <0, by drawing a diagram we can find that
I/ =4l >1.So

a, =0, if gek,.
Now let ¢, =(—1,0). Then for any quilO we have (¢, ¢,) <0. So
q: G(K;O)O=(K,1,O_‘10)o-

But ¢, ¢ { —n(c,, ;) : =0} since ¢, =[x sgn(f—q,) dx=1/2.

Proof of Theorem 2. The proof is similar to that of Theorem 1 in which
one uses Lemma D instead of Lemma 6. |
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