On Characterization of Best Approximation with Certain Constraints

Shu-Sheng Xu

Department of Mathematics, Jiangnan University, Wuxi, Jiangsu Province, China 214063 Communicated by Rong-Oing Jia

Received January 30, 1991; accepted in revised form December 3, 1996

The paper improves the characterization theorem of a best uniform approximation by a set of generalized polynomials having restricted ranges of derivatives obtained in an earlier paper and gives a characterization of a best approximation with certain constraints in the L_p norm $(1 \le p < +\infty)$. These results are applicable to many standard approximations with constraints. © 1998 Academic Press

1. INTRODUCTION

Assume $\mathscr{X} \subset [a, b]$ is a compact set containing at least n + 1 points, $\varPhi_n = \operatorname{span}{\{\varphi_1, ..., \varphi_n\}}$ is an *n*-dimensional subspace of $L_p[a, b]$ with $1 \leq p \leq +\infty$, and for a fixed nonnegative integer k, the kth derivatives $\varphi_1^{(k)}, ..., \varphi_n^{(k)}$ are continuous. For s = 0, 1, ..., k, assume that ${\{\varphi_1^{(s)}, ..., \varphi_n^{(s)}\}}$ has a maximal linearly independent subset which is an extended. Chebyshev system of order r_s on [a, b] (see the definition in [10, Chap. 1, Sect. 2], and write

$$K_{s} = \{ q \in \Phi_{n} : l_{s}(x) \leq q^{(s)}(x) \leq u_{s}(x), x \in [a, b] \},\$$

where l_s and u_s are extended real valued functions such that $-\infty \leq l_s(x) \leq u_s(x) \leq +\infty$. Let

$$K_S = \bigcap_{s=0}^k K_s.$$

With respect to uniform approximation (i.e., $p = +\infty$) by K_0 , which is the set of generalized polynomials having restricted ranges, Taylor [2] (1969) got a characterization theorem of a best approximation under the hypothesis $l_0 < u_0$. The investigation by Shih [3] (1980) allows $l_0(x_i) = u_0(x_i)$ at a set of nodes $\{x_i\}$, but some strong conditions are required. Getting rid of Shih's strong conditions, the author [4] (1992) and Zhong [5] (1993) independently gave the characterization theorems in forms of convex hulls and alternation in the general case of $l_0(x) \le u_0(x)$, which contains the special cases of approximation with interpolatory constraints, one-sided approximation, and copositive approximation. As we pointed out in [4], all the characterization theorems in [6], [7], and [8] are special cases of the case in [4]. However, the later result of Zhong [9] (1993) is not a special case of [4] because in order to apply it to the copositive case, $\{\varphi_1, ..., \varphi_n\}$ must be a Chebyshev system of order 2 while it is only required to be a Chebyshev system by [9].

Recently, we [1] got a characterization of a best uniform approximation by K_s , which has many special cases such as monotone approximation, coconvex approximation, multiple comonotone approximation, approximation with Hermite–Birkhoff interpolatory side conditions, and approximation by algebraic polynomials having bounded coefficients (if $0 \in [a, b]$), etc.

In this paper, we first improve the result of [1] and then give a characterization theorem of a best L_p $(1 \le p < +\infty)$ approximation by the product of K_s and a so-called "local convex cone."

2. MAIN RESULTS

To introduce the main results of this paper, we need some notation. For a fixed $q_0 \in K_s$, let

$$d(q_0^{(s)}(x), l_s) = \inf_{\xi \in [a, b]} \sqrt{(\xi - x)^2 + [l_s(\xi) - q_0^{(s)}(x)]^2},$$

and define $d(q_0^{(s)}(x), u_s)$ similarly. Write the set of all the nodes of K_s as

$$X_s^* = \{ x \in [a, b] : d(q_0^{(s)}(x), l_s) = d(q_0^{(s)}(x), u_s) = 0 \}.$$

If $x \in [a, b)$, by the use of

$$\lim_{\xi \to x+0} \frac{u_s(\xi) - q_0^{(s)}(\xi)}{|\xi - x|^{t-1}} = 0$$
(1)

we define an integer-valued function $t_{s, 1, 1}(x)$ as follows:

 $t_{s, 1, 1}(x) = \begin{cases} 0, & \text{if } x \notin X_s^* \text{ and } (1) \text{ does not hold for any positive integer } t, \\ 1, & \text{if } x \in X_s^* \text{ and } (1) \text{ does not hold for any positive integer } t, \\ \tau, & \text{if there exists a positive integer } \tau < r_s \text{ such that } (1) \text{ holds } \\ & \text{ for } t = \tau \text{ but not for } t = \tau + 1, \\ r_s + 1, & \text{if } (1) \text{ holds for } t = r_s \text{ but not for any positive integer } t, \\ + \infty, & \text{if } (1) \text{ holds for any positive integer } t. \end{cases}$

Similarly, using

$$\lim_{\xi \to x+0} \frac{q_0^{(s)}(\xi) - l_s(\xi)}{|\xi - x|^{t-1}} = 0$$
(2)

we define $t_{s, 1, -1}(x)$. And substituting x - 0 for x + 0 in (1) and (2), we define $t_{s, -1, 1}(x)$ and $t_{s, -1, -1}(x)$ respectively for $x \in (a, b]$. Given $x \in [a, b]$, write

$$t_{\pm} = \max\{\min\{t_{s,1,1}(x), t_{s,1,-1}(x)\}, \min\{t_{s,-1,1}(x), t_{s,-1,-1}(x)\}\},\\ \omega = (-1)^{t_{\pm}},$$

and define

$$t_{s}(x) = \begin{cases} t_{\pm} + 1, & \text{if there exists a } v \text{ such that } t_{s, 1, v}(x), t_{s, -1, -\omega v}(x) > t_{\pm}, \\ t_{\pm}, & \text{otherwise,} \end{cases}$$
$$T_{s} = \max_{x \in [a, b]} \{t_{s}(x)\}.$$

Similar to the explanation for t(x) at the end of Section 3 of [4], where t(x) coincides with $t_0(x)$ here, we see that under the condition of (4) below $t_s(x)$ is just the minimum of the orders of the zero x of $q_1 - q_2$ for all choices of $q_1, q_2 \in K_s$. So in fact $t_s(x)$ and T_s are independent of the choices of q_0 , and hence we call $t_s(x)$ the order of quasi-touch of l_s and u_s at x, and T_s the order of quasi-touch of l_s and u_s at x, and T_s the order of quasi-touch of l_s and u_s on [a, b].

In what follows we always assume that $q_0 \in K_s$ unless otherwise stated, and for each s = 0, ..., k,

$$\{q^{(s)}: q \in K_s\} \setminus \{q_0^{(s)}\} \neq \emptyset$$
(3)

and

$$\begin{cases} T_s \leqslant r_s, \\ t_s(x) < r_s, & x \in X_s'', \end{cases}$$
(4)

where X_{s}'' will be defined later.

Let

$$\begin{aligned} X'_{s} &= \left\{ x \in [a, b] \setminus X^{*}_{s} : d(q_{0}^{(s)}(x), l_{s}) \text{ or } d(q_{0}^{(s)}(x), u_{s}) = 0 \right\}, \\ \sigma_{s}(x) &= \left\{ \begin{aligned} 1, & \text{if } x \in X'_{s} \text{ and } d(q_{0}^{(s)}(x), l_{s}) = 0, \\ -1, & \text{if } x \in X'_{s} \text{ and } d(q_{0}^{(s)}(x), u_{s}) = 0; \end{aligned} \right. \\ X''_{s} &= \left\{ x \in X^{*}_{s} : \text{ there exist } \mu \text{ and } v \text{ such that } t_{s, \mu, \nu}(x) > t_{s}(x) \right\}, \\ \sigma_{s}(x) &= -\nu(-1)^{\left[(\mu - 1)/2\right] t_{s}(x)}, & \text{if } x \in X''_{s} \text{ and } t_{s, \mu, \nu}(x) > t_{s}(x); \end{aligned}$$

and

$$\begin{aligned} \hat{x} &= (\varphi_1(x), ..., \varphi_n(x)), \\ \hat{x}^{(s+t)} &= (\varphi_1^{(s+t)}(x), ..., \varphi_n^{(s+t)}(x)), \\ N_s &= \{ \pm \hat{x}^{(s+t)} : t = 0, 1, ..., t_s(x) - 1, x \in X_s^* \} \\ &\cup \{ -\sigma_s(x) \ \hat{x}^{(s+t_s(x))} : x \in X_s' \cup X_s'' \}. \end{aligned}$$

Moreover, for $f \in C(\mathcal{X})$ or $f \in L_p[a, b]$ with $1 \le p < +\infty$, we write respectively

$$K_{q_0}^{\infty} = \left\{ q \in \Phi_n : \|f - q\|_{\infty} < \|f - q_0\|_{\infty} \right\}$$

or

$$K_{q_0}^p = \{ q \in \Phi_n : \| f - q \|_p < \| f - q_0 \|_p \}.$$

And if $f \in C(\mathcal{X})$, we write

$$X = \{ x \in \mathscr{X} : |f(x) - q_0(x)| = ||f - q_0||_{\infty} \}$$

and

$$N_{q_0} = \{-\operatorname{sgn}[f(x) - q_0(x)] \, \hat{x} : x \in X\}.$$

By letting $q_1 = \sum_{j=1}^n a_j \varphi_j$ and $q_2 = \sum_{j=1}^n b_j \varphi_j$ be any elements of Φ_n , we define their inner product by $(q_1, q_2) = \sum_{j=1}^n a_j b_j$. For any subset *A* of the space Φ_n , we define

$$A^{\circ} = \{h \in \Phi_n : (q, h) \leq 0, \forall q \in A\}.$$

Let

$$cc(A) = \left\{ q : q = \sum_{j=1}^{m} \lambda_j q_j, q_j \in A, \lambda_j \ge 0, m \text{ is an arbitrary positive integer} \right\}$$

if $A \neq \emptyset$, and $cc(A) = \{0\}$ if $A = \emptyset$. By $\overline{cc}(A)$ we denote the closure of cc(A). And the *relative interior* of A in Φ_n , which we denote by ri(A), is defined as follows:

$$\operatorname{ri}(A) = \{ q \in \operatorname{aff}(A) : \exists \delta > 0, \ O(q, \delta) \cap \operatorname{aff}(A) \subset A \},\$$

where

$$aff(A) := \{\lambda_1 q_1 + \dots + \lambda_m q_m \mid q_i \in A, \lambda_1 + \dots + \lambda_m = 1\}$$

and $O(q, \delta)$ is the δ -neighborhood of q.

Now we can restate the main result of [1] as follows:

THEOREM A. Assume that $f \in C(\mathcal{X}) \setminus K_S$, $K_{a_n}^{\infty} \neq \emptyset$. If

$$\bigcap_{s=0}^{k} \operatorname{ri}(K_{s}) \neq \emptyset,$$

then q_0 is a best uniform approximation to f from K_s if and only if there exists a vector $h \in cc(N_{q_0}) \setminus \{0\}$ such that

$$-h\in\overline{\mathrm{cc}}\left(\bigcup_{s=0}^{k}N_{s}\right)$$

Given a subscript set Λ , and for each $\lambda \in \Lambda$ a real number d_{λ} and a vector $h_{\lambda} \in \Phi_n \setminus \{0\}$, we say that

$$K_{\Lambda} := \{ q \in \Phi_n : (q, h_{\lambda}) \leq d_{\lambda}, \lambda \in \Lambda \}$$

is a *local convex cone* at $q_0 \in K_A$ if there exists a $\delta > 0$ such that the δ -neighborhood of q_0 in $\Phi_n O(q_0, \delta)$ satisfies

$$O(q_0, \delta) \subset \{ q \in \Phi_n : (q, h_\lambda) \leq d_\lambda, \lambda \in \Lambda \backslash \Lambda' \},\$$

where

$$\Lambda' = \{ \lambda \in \Lambda : (q_0, h_\lambda) = d_\lambda \}.$$

Now, the first result of this paper is as follows:

THEOREM 1. Assume that K_A is a local convex cone at $q_0 \in K := K_A \cap K_S$, $f \in C(\mathscr{X}) \setminus K$, $K_{q_0}^{\infty} \neq \emptyset$. If

$$\operatorname{ri}(K_{A}) \cap \left[\bigcap_{s=0}^{k} \operatorname{ri}(K_{s})\right] \neq \emptyset,$$
(5)

then q_0 is a best uniform approximation to f from K if and only if there exists a vector $h \in cc(N_{q_0}) \setminus \{0\}$ such that

$$-h\in\overline{\operatorname{cc}}\left(\{h_{\lambda}:\lambda\in\Lambda'\}\cup\left(\bigcup_{s=0}^{k}N_{s}\right)\right).$$
(6)

And if in addition Λ' is a finite set, then (6) can be substituted by

$$-h \in \operatorname{cc}\left(\{h_{\lambda} : \lambda \in \Lambda'\} \cup \left(\bigcup_{s=0}^{k} N_{s}\right)\right).$$

Theorem 1 improves Theorem A in two respects. First, it allows us to add some linear constraints (i.e., $(q, h_{\lambda}) \leq d_{\lambda}$) to the coefficients of q in K. For example, the set of generalized polynomials with bounded coefficients $\{q = \sum_{i=1}^{n} a_i \varphi_i : \alpha_i \leq a_i \leq \beta_i, i = 1, ..., n\}$ is a special case of K_A . Second, when A' is a finite set, $\overline{cc}(\bullet)$ in (6) can be rewritten as $cc(\bullet)$, which is more precise in formulation and more valuable in applications.

The second result of the paper is a similar characterization theorem of a best approximation in the L_p norm $(1 \le p < +\infty)$:

THEOREM 2. Assume that K_A is a local convex cone at $q_0 \in K = K_A \cap K_S$, $f \in L_p \setminus K$, $1 \leq p < +\infty$, $K_{q_0}^p \neq \emptyset$, and (5) holds. If mes $Z(f - q_0) = 0$ when p = 1, where mes $Z(f - q_0)$ is the measure of the set

$$Z(f-q_0) = \{x \in [a, b] : f(x) - q_0(x) = 0\},\$$

then q_0 is a best L_p approximation to f from K if and only if

$$(c_1, ..., c_n) \in \overline{\mathsf{cc}} \left(\{ h_{\lambda} : \lambda \in \Lambda' \} \cup \left(\bigcup_{s=0}^k N_s \right) \right), \tag{7}$$

where

$$c_i = \int_a^b \varphi_i |f - q_0|^{p-1} \operatorname{sgn}(f - q_0) dx, \quad i = 1, ..., n.$$

And if in addition Λ' is a finite set, then (7) can be substituted by

$$(c_1, ..., c_n) \in \operatorname{cc}\left(\{h_{\lambda} : \lambda \in \Lambda'\} \cup \left(\bigcup_{s=0}^k N_s\right)\right).$$

3. PROOF OF THEOREM 1

If we apply Theorem (6.9.7) in [11] to the case being discussed here, then the theorem can be rewritten as

LEMMA A. Assume that $K \subset \Phi_n$ is a closed convex set, $q_0 \in K$. If $f \in C(\mathscr{X}) \setminus K$ and $K_{q_0}^{\infty} \neq \emptyset$ (or $f \in L_p[a, b] \setminus K$, $1 \leq p < +\infty$, and $K_{q_0}^p \neq \emptyset$), then q_0 is a best approximation to f from K in uniform norm (or L_p norm) if and only if there exists a vector $h \in (K_{q_0}^{\infty} - q_0)^{\circ} \setminus \{0\}$ (or $(K_{q_0}^p - q_0)^{\circ} \setminus \{0\}$) such that $-h \in (K - q_0)^{\circ}$.

Now we restate Proposition (6.9.2) in [11] and Lemmas 3 and 4 in [1] as follows:

LEMMA B. If $A \subset \Phi_n$, then

$$A^{\circ\circ} = \overline{\operatorname{cc}}(A).$$

And if A is a convex compact set not containing the origin, then

$$A^{\circ\circ} = \operatorname{cc}(A).$$

LEMMA C. For s = 0, ..., k, we have

$$(K_s - q_0)^\circ = \overline{\mathrm{cc}}(N_s).$$

LEMMA D. If $f \in C(\mathcal{X})$, $q_0 \in \Phi_n$, and $K_{q_0}^{\infty} \neq \emptyset$, then

$$(K_{q_0}^{\infty} - q_0)^{\circ} = \operatorname{cc}(N_{q_0}).$$

LEMMA 1. Assume C_i , i = 0, 1, ..., m, are closed convex subsets of Φ_n , $0 \in \bigcap_{i=0}^m C_i$ and $\bigcap_{i=0}^m \operatorname{ri}(C_i) \neq \emptyset$, then

$$\left(\bigcap_{i=0}^{m} C_{i}\right)^{\circ} = \operatorname{cc}\left(\bigcup_{i=0}^{m} C_{i}^{\circ}\right).$$

Proof. Since $(C_0)^\circ = \operatorname{cc}(C^\circ)_0$, we can assume inductively

$$\left(\bigcap_{i=0}^{l-1} C_i\right)^\circ = \operatorname{cc}\left(\bigcap_{i=0}^{l-1} C_i^\circ\right).$$

We will now prove

$$\left(\bigcap_{i=0}^{l} C_{i}\right)^{\circ} = \operatorname{cc}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right).$$

Take $g_0 \in \bigcap_{i=0}^{m} \operatorname{ri}(C_i)$. For j = 0, ..., l, by $C_j^{\circ} \subset \overline{\operatorname{cc}}(\bigcup_{i=0}^{l} C_i^{\circ})$, the definition of $(\bullet)^{\circ}$, and Lemma B we get

$$\left(\overline{\operatorname{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ} \subset C_{j}^{\circ\circ} = \overline{\operatorname{cc}}(C_{j}).$$

So for any $g \in (\overline{cc}(\bigcup_{i=0}^{l} C_{i}^{\circ}))^{\circ}$, by the convexity of $cc(C_{j})$ we see that for any $\lambda \in (0, 1)$

$$g_{\lambda} := \lambda g + (1 - \lambda) g_0 \in \operatorname{cc}(C_j), \quad j = 0, 1, ..., l.$$

Since $0 \in \bigcap_{i=0}^{m} C_i$, there exists an $\varepsilon > 0$ such that $\varepsilon g_{\lambda} \in \bigcap_{i=0}^{l} C_i$. So $g_{\lambda} \in \operatorname{cc}(\bigcap_{i=0}^{l} C_i)$ and hence $g \in \overline{\operatorname{cc}}(\bigcap_{i=0}^{l} C_i)$. So

$$\left(\overline{\operatorname{cc}}\left(\bigcup_{i=0}^{l}C_{i}^{\circ}\right)\right)^{\circ}\subset\overline{\operatorname{cc}}\left(\bigcap_{i=0}^{l}C_{i}\right).$$

On the other hand, for any $g \in \overline{cc}(\bigcap_{i=0}^{l} C_i)$, based on Lemma B we have $g \in \overline{cc}(C_j) = C_j^{\circ\circ}, j = 0, 1, ..., l$. So by the definition of $(\bullet)^\circ$ we get $g \in (\overline{cc}(\bigcup_{i=0}^{l} C_i^\circ))^\circ$. Then

$$\left(\overline{\operatorname{cc}}\left(\bigcup_{i=0}^{l}C_{i}^{\circ}\right)\right)^{\circ}=\overline{\operatorname{cc}}\left(\bigcap_{i=0}^{l}C_{i}\right).$$

Combined with Lemma B we get

$$\left(\bigcap_{i=0}^{l} C_{i}\right)^{\circ} = \left(\overline{\operatorname{cc}}\left(\bigcap_{i=0}^{l} C_{i}\right)\right)^{\circ} = \left(\overline{\operatorname{cc}}\left(\bigcap_{i=0}^{l} C_{i}^{\circ}\right)\right)^{\circ\circ}$$
$$= \overline{\operatorname{cc}}\left(\bigcup_{i=0}^{l} C_{i}^{\circ}\right).$$

Now to complete the proof it is sufficient to show

$$\overline{\operatorname{cc}}\left(\bigcup_{i=0}^{l}C_{i}^{\circ}\right)=\operatorname{cc}\left(\bigcup_{i=0}^{l}C_{i}^{\circ}\right).$$

Write $\Psi = \operatorname{span}(\bigcap_{i=0}^{l-1} C_i)$. For any $g \in \overline{\operatorname{cc}}(\bigcup_{i=0}^{l} C_i^\circ)$, there exist $h_j \in \operatorname{cc}(\bigcup_{i=0}^{l} C_i^\circ), j = 1, 2, ...,$ such that

$$h_j \to g \qquad (j \to \infty).$$

Let

$$h_j = h_{1j} + h_{2j} + h_{3j} + h_{4j},$$

$$h_{1j} + h_{2j} \in \operatorname{cc}\left(\bigcup_{i=0}^{l-1} C_i^\circ\right) = \left(\bigcap_{i=0}^{l-1} C_i\right)^\circ,$$

$$h_{3j} + h_{4j} \in \operatorname{cc}(C_l^\circ) = C_l^\circ,$$
(8)

$$\begin{cases} h_{1j}, h_{3j} \in \Psi + \text{span } C_l, \\ h_{2j}, h_{4j} \perp \Psi + \text{span } C_l. \end{cases}$$
(9)

From the boundedness of $\{h_j\}$ we see that $\{h_{2j} + h_{4j}\}$ is bounded. So there exists a subsequence of $\{h_{2j} + h_{4j}\}$ (we still denote it by $\{h_{2j} + h_{4j}\}$ for convenience) and a $g_2 \perp \Psi + \text{span } C_l$ such that when $j \rightarrow \infty$

$$h_{2i} + h_{4i} \to g_2 \in C_l^\circ. \tag{10}$$

Since $(h_{2i}, \bar{g}) = 0$ for any $\bar{g} \in \Psi$, by (8) we have

$$h_{1j} = (h_{1j} + h_{2j}) - h_{2j} \in \left(\bigcap_{i=0}^{l-1} C_i\right)^{\circ}.$$
 (11)

Similarly

$$h_{3i} \in C_l^\circ. \tag{12}$$

Assume that $\{|h_{1j}|\}$ is unbounded, then $\{h_{1j}/|h_{1j}|\}$ has a subsequence which converges to an $h \neq 0$. And by the boundedness of $\{h_{1j} + h_{3j}\}$ we see that $\{h_{3j}/|h_{1j}|\}$ converges to -h. Thus by (9), (11), and (12)

$$\begin{cases} h \in (\Psi + \operatorname{span} C_l) \cap \left(\bigcap_{i=0}^{l-1} C_i\right)^\circ, \\ -h \in C_l^\circ. \end{cases}$$
(13)

For $g_0 \in \bigcap_{i=0}^{m} \operatorname{ri}(C_i)$ and any $\overline{g} \in \Psi$ there exists an $\varepsilon > 0$ such that $g_0 \pm \varepsilon \overline{g} \in \bigcap_{i=0}^{l-1} C_i$. So $(g_0 \pm \varepsilon \overline{g}, h) \leq 0$. Since (13) implies $(g_0, \pm h) \leq 0$, hence $(g_0, h) = 0$, we have $(\overline{g}, h) = 0$. Similarly, $(\overline{g}, h) = 0$ for any $\overline{g} \in \operatorname{span} C_l$. Then $h \perp (\Psi + \operatorname{span} C_l)$ which contradicts (13). Now we see that $\{|h_{1j}|\}$ is bounded and hence $\{|h_{3j}|\}$ is bounded too. So by (11) and (12) there exist g_1 and g_3 such that

$$h_{1j} \to g_1 \in \left(\bigcap_{i=0}^{l-1} C_i\right)^\circ, \qquad h_{3j} \to g_3 \in C_l^\circ$$

(taking subsequences if necessary) when $j \rightarrow \infty$. Thus by (10) and the inductive assumption we have

$$g = g_1 + g_2 + g_3 \in \operatorname{cc}\left(\bigcup_{i=0}^{l} C_i^{\circ}\right).$$

LEMMA 2. For each s = 0, 1, ..., k, if

$$\delta_s = \inf \{ |x_1 - x_2| : x_1, x_2 \in X_s^*, x_1 \neq x_2 \},\$$

then for any $x \in X_s^*$ there exists a positive $\delta_0 < \delta_s$ such that

$$(x, x + \delta_0] \cap X'_s = \emptyset$$
 or $\sigma_s(\xi) = \sigma_s(x), \quad \xi \in (x, x + \delta_0] \cap X'_s,$ (14)

and

$$[x - \delta_0, x) \cap X'_s = \emptyset \text{ or } \sigma_s(\xi) = (-1)^{t_s(x)} \sigma_s(x), \quad \xi \in [x - \delta_0, x) \cap X'_s.$$
(15)

Proof. Because for any $q \in K_s$ we have $q^{(s)}(x) = q_0^{(s)}(x)$, $x \in X_s^*$, by (3) and the definition of the extended Chebyshev system we conclude that X_s^* is a finite set and hence $\delta_s > 0$.

Assume $(x, x + \delta] \cap X'_s \neq \emptyset$ for any positive $\delta < \delta_s$.

If for any positive $\delta < \delta_s$ there exists ξ , $\eta \in (x, x + \delta] \cap X'_s$ such that $\sigma_s(\xi) = 1$, $\sigma_s(\eta) = -1$, then there exist two sequences $\{\xi_i\}$ and $\{\eta_i\}$ such that ξ_i , $\eta_i \to x + 0$ $(i \to \infty)$ and

$$\begin{cases} d(q_0^{(s)}(\xi_i), l_s) = 0, \\ d(q_0^{(s)}(\xi_i), u_s) = 0, \end{cases} \qquad i = 1, 2, \dots.$$

So for any $q \in K_s$ we have

$$\begin{cases} q^{(s)}(\xi_i) - q_0^{(s)}(\xi_i) \ge 0, \\ q^{(s)}(\eta_i) - q_0^{(s)}(\eta_i) \le 0, \end{cases} \qquad i = 1, 2, ...,$$

which implies that $q^{(s)} - q_0^{(s)} \equiv 0$ by the definition of the extended Chebyshev system. This contradicts the hypothesis of (3). Now we see that there exists a positive $\delta_0 < \delta_s$ such that $\sigma_s(\xi) \equiv \text{constant}$ for any $\xi \in (x, x + \delta_0] \cap X'_s$. Without loss of generality, we assume that the constant equals 1. So there exists a sequence $\{\xi_i\}$ with $\xi_i \to x + 0$ $(i \to \infty)$ and $d(q_0^{(s)}(\xi_i), l_s) = 0$. Then by the definition we get directly $t_{s,1,-1}(x) = \infty$ and $\sigma_s(x) = 1$ which implies (14). The proof of (15) is similar. LEMMA 3. For $0 \leq s \leq k$, $x \in X_s^*$, if there is a positive $\delta_0 < \delta_s$ that satisfies (14) and (15), then

$$(H-q_0)^\circ = \operatorname{cc}(M),$$

where

$$H = \{ q \in \Phi_n : l_s(x) \leq q^{(s)}(x) \leq u_s(x), x \in [x - \delta_0, x + \delta_0] \},$$
(16)
$$M = \{ \pm \hat{x}^{(s+j)} : j = 0, 1, ..., t_s(x) - 1 \}$$

$$\cup \{ -\sigma_s(\xi) \, \hat{\xi}^{(s+t_s(\xi))} : \xi \in [x - \delta_0, x + \delta_0] \cap (X'_s \cup X''_s) \}.$$
(17)

Proof. By $\varphi_i^{(s)}[x_0, x_1, ..., x_j]$ we denoted the difference quotient of the *j*th order of $\varphi_i^{(s)}$. Write

$$[\overline{x_0, x_1, ..., x_j}]^{(s)} = (\varphi_1^{(s)}[x_0, ..., x_j], ..., \varphi_n^{(s)}[x_0, ..., x_j]).$$

Based on the well-known property of the difference quotient with coalescent knots we have

$$\left[\underbrace{\widehat{x_{,...,x}}}_{j+1}\right]^{(s)} = \frac{1}{j!} \, \widehat{x}^{(s+j)} \tag{18}$$

and

$$\frac{1}{x_j - x} \left\{ \underbrace{[\overbrace{x, ..., x}_{j-1}, x_j]^{(s)}}_{j-1} - \frac{1}{(j-1)!} \hat{x}^{(s+j-1)} \right\} = \underbrace{[\overbrace{x, ..., x}_{j}, x_j]^{(s)}}_{j}.$$
 (19)

Write $t_s(x)$ as t for convenience. Since Lemma C implies $(H-q_0)^\circ = \overline{cc}(M)$, it is sufficient to prove that $h \in cc(M)$ if $h \in \overline{cc}(M)$.

If h = 0, then $h \in cc(M)$ clearly. Otherwise, there exist $h_i \neq 0$, i = 1, 2, ..., such that $h_i \in cc(M)$ and

$$h_i \to h$$
 $(i \to \infty)$.

(i) Provided $x \in X_s''$, let $\sigma = \sigma_s(x)$. Since by the definition of t_s we have $t_s(\xi) = 0$ for any $\xi \in X_s'$, from the Carathéodory theorem we can write

$$h_{i} = \sum_{j=0}^{t} \theta_{ij} \hat{x}^{(s+j)} + \sum_{j=t+1}^{t+m_{j}} \theta_{ij} \hat{x}_{ij}^{(s)},$$
(20)

where $0 \leq m_i \leq n+1$, $x_{ij} \in [x - \delta_0, x + \delta_0] \cap X'_s$, and

$$\begin{cases} -\sigma \theta_{it} \ge 0, \\ -\delta_s(x_{ij}) \ \theta_{ij} > 0, \qquad j = t+1, ..., t+m_i. \end{cases}$$
(21)

Take a subsequence of $\{h_i\}$ if necessary (still denoted by $\{h_i\}$) such that m_i equals a constant m (clearly, $0 \le m \le n+1$); for each j = t+1, ..., t+m, $\sigma_s(x_{ij})$ (i = 1, 2, ...) is a constant; and there exists an x_j such that $x_{ij} \rightarrow x_j$ $(i \rightarrow \infty)$. Then from (21), (14), and (15) we have

$$\begin{cases} -\sigma_s(x_j) \ \theta_{ij} > 0, & \text{if } j \in J_0 := \{ j: x_j \neq x, \ j = t+1, \dots, t+m \}, \\ -\sigma \theta_{ij} > 0, & \text{if } j \in J := \{ j: x_j = x, \ j = t+1, \dots, t+m \} \text{ and } x_{ij} > x, \\ -(-1)^t \ \sigma \theta_{ij} > 0, & \text{if } j \in J := \{ j: x_j = x, \ j = t+1, \dots, t+m \} \text{ and } x_{ij} < x. \end{cases}$$

Let

$$\begin{cases} \theta'_{ij} = \theta_{ij}, & j \in J_0 \text{ or } j = t, \\ \theta'_{il} = \theta_{il} + \frac{1}{l!} \sum_{j \in J} \theta_{ij} (x_{ij} - x)^l, & l = 0, ..., t - 1, \\ \theta'_{ij} = \theta_{ij} (x_{ij} - x)^l, & j \in J. \end{cases}$$
(23)

(22)

Since (19) implies

$$\hat{x}_{ij}^{(s)} - \sum_{l=0}^{t-1} (x_{ij} - x)^l \frac{1}{l!} \hat{x}^{(s+l)} = (x_{ij} - x) \widehat{[x, x_{ij}]}^{(s)} - \sum_{l=1}^{t-1} (x_{ij} - x)^l \frac{1}{l!} \hat{x}^{(s+l)}$$
$$= (x_{ij} - x)^2 \widehat{[x, x, x_{ij}]}^{(s)} - \sum_{l=2}^{t-1} (x_{ij} - x)^l \frac{1}{l!} \hat{x}^{(s+l)}$$
$$= \cdots$$
$$= (x_{ij} - x)^t \widehat{[x, ..., x, x_{ij}]}^{(s)},$$

we can rewrite h_i as

$$h_{i} = \sum_{j=0}^{t} \theta'_{ij} \hat{x}^{(s+j)} + \sum_{j \in J} \theta'_{ij} [\overbrace{x, ..., x}^{t}, x_{ij}]^{(s)} + \sum_{j \in J_{0}} \theta'_{ij} \hat{x}^{(s)}_{ij}.$$

Now we shall prove that the sequence $\{A_j\}$, $A_i := \max_{j=0, \dots, l+m} |\theta'_{ij}|$, is bounded. In fact, otherwise $\{A_i\}$ (or its subsequence) satisfies $A_i \to +\infty$

 $(i \to \infty)$; θ'_{ij}/A_i has a limit θ_j ; and at least one of $\{\theta_j\}_{j=0}^{t+m}$ does not equal zero. Since $\lim_{i\to\infty} h_i/A_i = 0$, by (18) we see that zero equals

$$\sum_{j=0}^{t-1} \theta_j \hat{x}^{(s+j)} + \left(\theta_t + \frac{1}{t!} \sum_{j \in J} \theta_j\right) \hat{x}^{(s+t)} + \sum_{j \in J_0} \theta_j \hat{x}_j^{(s)},$$
(24)

and (21)-(23) imply

$$\begin{cases} -\sigma\theta_t \ge 0, \\ -\sigma\theta_j \ge 0, & j \in J, \\ -\sigma_s(x_j) \ \theta_j \ge 0, & j \in J_0. \end{cases}$$
(25)

Because the definition of extended Chebyshev system of order r_s and the hypothesis $t \leq r_s$ imply that $\{\hat{x}^{(s+j)}\}_{j=0}^{t-1}$ are linearly independent, therefore at least one of θ_j 's (j = t, ..., t + m) does not equal zero. Based on Lemma 5 of [4] (substituted Φ_n by span $\{\varphi_1^{(s)}, ..., \varphi_n^{(s)}\}$), there exists a $q \in K_s$ such that

$$\begin{cases} q^{(s+j)}(x) = 0, & j = 0, ..., t-1, \\ \sigma q^{(s+t)}(x) > 0, \\ \sigma_s(x_j) q^{(s)}(x_j) > 0. \end{cases}$$

So by (24) and (25) we have

$$0 = (0, q)$$

= $\sum_{j=0}^{t-1} \theta_j q^{(s+j)}(x) + \left[\theta_t + \frac{1}{t!} \sum_{j \in J} \theta_j \right] q^{(s+t)}(x) + \sum_{j \in J_0} \theta_j q^{(s)}(x_j) < 0,$

which is a contradiction. Thus A_i is bounded.

Now, if we write the limit of θ'_{ij} as θ_j , then $h = \lim_{i \to \infty} h_i$ still has the form of (24). And by (25) we have $h \in cc$ (M).

(ii) If $x \notin X''_s$, then $[x - \delta_0, x + \delta_0] \cap X'_s = \emptyset$. So in (20) we have $m_i = 0$ and $\theta_{it} = 0$. Let $A_i = \max_{j=0, \dots, t-1} |\theta_{ij}|$. Then from the linear independence of $\{\hat{x}^{(s+j)}\}_{j=0}^{t-1}$ it is not difficult to see that $\{A_i\}$ is bounded. So $h = \lim_{i \to \infty} h_i \in \operatorname{cc}(M)$.

LEMMA 4. For each s = 1, ..., k,

$$(K_s - q_0)^\circ = \operatorname{cc}(N_s).$$
 (26)

Proof. Assume that $X_s^* = \{x_1, ..., x_m\}$. By Lemma 2 there exists a positive $\delta_0 < \delta_s$ such that (14) and (15) hold for every $x \in X_s^*$. Write

$$H_0 = \{ q \in \Phi_n : l_s(x) \leq q^{(s)}(x) \leq u_s(x), s \in [a, b] \setminus O(X_s^*, \delta_0) \},\$$

$$M_0 = \{ -\sigma_s(x) \ \hat{x}^{(s)} : x \in X'_s \setminus O(X_s^*, \delta_0) \}.$$

For each i = 1, ..., m, by H_i and M_i we denote respectively the sets of (16) and (17) with x substituted by x_i . Then

$$K_{s} = \bigcap_{i=0}^{m} H_{i},$$

$$N_{s} = \bigcup_{i=0}^{m} M_{i},$$

$$(H_{i} - q_{0})^{\circ} = \operatorname{cc}(M_{i}), \qquad i = 1, ..., m.$$

Suppose

$$(H_0 - q_0)^\circ = \operatorname{cc}(M_0). \tag{27}$$

If by Lemma 5 in [4] we take a $q \in K_s$ such that

$$\begin{cases} q^{(s+j)}(x_i) = 0, & j = 0, 1, ..., t_s(x_i) - 1, i = 1, ..., m, \\ \sigma_s(\xi) q^{(s+t_s(\xi))}(\xi) > 0, & \xi \in X'_s \cup X''_s, \end{cases}$$
(28)

then it is clear that

$$\frac{1}{2}(q-q_0) \in \bigcap_{i=0}^m \operatorname{ri}(H_i),$$

and by Lemma 1 we have

$$(K_{s}-q_{0})^{\circ} = \left[\bigcap_{i=0}^{m} (H_{i}-q_{0})\right]^{\circ} = \operatorname{cc}\left(\bigcup_{i=0}^{m} (H_{i}-q_{0})^{\circ}\right) = \operatorname{cc}(N_{s}).$$

Now it is sufficient to prove (27). In fact, if $0 \notin co(M_0)$, which denotes the convex hull of M_0 , then from Lemma B we have

$$\overline{\mathrm{cc}}(\mathrm{co}(M_0)) = \mathrm{cc}(\mathrm{co}(M_0)).$$

So by Lemma C with K_s replaced by H_0 we get (27). On the other hand, it is impossible that $0 \in co(M_0)$ because otherwise we have

$$\sum_{j=0}^{r} \lambda_j \sigma_s(\xi_j) \, \hat{\xi}_j^{(s)} = 0, \qquad \lambda_j < 0, \quad \xi_j \in X'_s \setminus O(X^*_s, \, \delta_0),$$

and hence for the q satisfying (28)

$$\sum_{j=0}^{r} \lambda_j \sigma_s(\xi_j) \ q^{(s)}(\xi_j) = (q, 0) = 0,$$

which contradicts the second inequality of (28).

LEMMA 5. If $K_A \subset \Phi_n$ is a local convex cone at $q_0 \in K_A$, then

$$(K_{\Lambda} - q_0)^{\circ} = \overline{\operatorname{cc}}(\{h_{\lambda} : \lambda \in \Lambda'\}).$$

Proof. Since $[\overline{cc}(A)]^{\circ} = A^{\circ}$, by Lemma B it is sufficient to prove that

$$\overline{\operatorname{cc}}(K_{\Lambda} - q_0) = [\overline{\operatorname{cc}}(\{h_{\lambda} \colon \lambda \in \Lambda'\})]^{\circ}.$$

Write

$$H_{\lambda} = \{ q \in \Phi_n : (q, h_{\lambda}) \leq d_{\lambda} \}.$$

Assume $q \in \overline{cc}(K_A - q_0)$. For any $\lambda \in A'$, it is clear that $q \in \overline{cc}(H_\lambda - q_0)$ and $(q + q_0, h_\lambda) \leq d_\lambda$. So $(q, h_\lambda) \leq 0$, $\lambda \in A'$, and hence

$$q \in [\overline{\operatorname{cc}}(\{h_{\lambda}: \lambda \in \Lambda'\})]^{\circ}.$$

On the other hand, suppose $q \notin \overline{cc}(K_A - q_0)$. By the definition of a local convex cone there exists a $\delta > 0$ such that

$$\delta q \in H_{\lambda} - q_0, \qquad \lambda \notin \Lambda'.$$

If

$$\delta q \in \overline{\mathrm{cc}}(H_{\lambda} - q_0), \qquad \lambda \in \Lambda',$$

then $\delta q \in K_A - q_0$ and $q \in \overline{cc}(K_A - q_0)$, which contradicts the hypothesis. So there exists at least one $\lambda_0 \in A'$ such that $\delta q \notin \overline{cc}(H_{\lambda_0} - q_0)$. So

$$(\delta q, h_{\lambda_0}) > 0,$$

which implies

$$q \notin [\overline{\operatorname{cc}}(\{h_{\lambda} : \lambda \in \Lambda'\})]^{\circ}. \quad \blacksquare$$

The Proof of Theorem 1. By Lemmas 1, 4, and 5 we have

$$(K-q_0)^\circ = \overline{\operatorname{cc}}\left(\{h_\lambda \colon \lambda \in \Lambda'\} \cup \left(\bigcup_{s=0}^k N_s\right)\right).$$

And if in addition Λ' is a finite set, it is clear that

$$\overline{\mathrm{cc}}(\{h_{\lambda}:\lambda\in\Lambda'\})=\mathrm{cc}(\{h_{\lambda}:\lambda\in\Lambda'\}),$$

and hence

$$(K-q_0)^\circ = \operatorname{cc}\left(\{h_{\lambda}: \lambda \in \Lambda'\} \cup \left(\bigcup_{s=0}^k N_s\right)\right).$$

Combining this with Lemma A and Lemma D we get the conclusion of Theorem 1.

4. PROOF OF THEOREM 2

LEMMA 6. If $f \in L_p$ $(1 \leq p < +\infty)$, $q_0 \in \Phi_n$, $K_{q_0}^p \neq \emptyset$, and mes $Z(f - \varphi)$ $q_0 = 0$ when p = 1, then $(c_1, ..., c_n) \neq 0$ and

$$(K_{q_0}^p - q_0)^\circ = \{ -\eta(c_1, ..., c_n) : \eta \ge 0 \},$$
(29)

where the c_i 's are defined below (7).

Proof. Write

$$h_0 = (c_1, ..., c_n).$$

Based on the characterization theorem of a best L_p approximation by the linear subspace Φ_n (see [12, Theorems 3.3.1 and 3.3.2]), we see that if $h_0 = 0$ then q_0 is a best approximation to f from Φ_n , which contradicts the hypothesis of $K_{q_0}^p \neq \emptyset$. Thus $h_0 \neq 0$. Now, it is sufficient to prove

$$\overline{\operatorname{cc}}(K_{q_0}^p - q_0) = \{-h_0\}^\circ \tag{30}$$

because by Lemma B it follows from (30) that

$$(\overline{\operatorname{cc}}(K_{q_0}^p - q_0))^\circ = \overline{\operatorname{cc}}(\{-h_0\}),$$

which implies (29).

(i) For $q \in \overline{cc}(K_{q_0}^p - q_0)$, we will prove $q \in \{-h_0\}^\circ$. Assume on the contrary that $(q, -h_0) > 0$; then there must be a $q_1 \in cc(K_{q_0}^p - q_0)$ such that $(q_1, -h_0) > 0$. By the definition of h_0 we get

$$\int_{a}^{b} q_{1} |f - q_{0}|^{p-1} \operatorname{sgn}(f - q_{0}) dx < 0.$$
(31)

It is easy to show that

$$\|f - q_0\|_p < \|f - q_0 - \delta q_1\|_p, \quad \forall \delta > 0.$$
(32)

In fact, if p = 1, by (31) we have

$$\begin{split} \|f - q_0\|_1 &= \int_a^b \left(f - q_0 - \delta q_1\right) \operatorname{sgn}(f - q_0) \, dx + \delta \int_a^b q_1 \operatorname{sgn}(f - q_0) \, dx \\ &< \|f - q_0 - \delta q_1\|_1. \end{split}$$

If p > 1, then from the Hölder Inequality we have

$$\begin{split} \|f - q_0\|_p^p &= \int_a^b (f - q_0 - \delta q_1) |f - q_0|^{p-1} \operatorname{sgn}(f - q_0) \, dx \\ &+ \delta \int_a^b q_1 |f - q_0|^{p-1} \operatorname{sgn}(f - q_0) \, dx \\ &< \int_a^b |f - q_0 - \delta q_1| |f - q_0|^{p-1} \, dx \\ &\leqslant \|f - q_0 - \delta q_1\|_p \, \|f - q_0\|_p^{p-1}. \end{split}$$

And hence

$$\|f - q_0\|_p < \|f - q_0 - \delta q_1\|_p \qquad (p > 1).$$

Now we get (32) and hence $q_1 \notin cc(K_{q_0}^p - q_0)$ which is a contradiction.

(ii) If $(q, -h_0) < 0$, then

$$\rho := (q, h_0) = \int_a^b q |f - q_0|^{p-1} \operatorname{sgn}(f - q_0) \, dx > 0.$$
(33)

Since $q \in L_p$ and $|f - q_0|^{p-1} \in L_{p'}$ (where (1/p) + (1/p') = 1), $|q| |f - q_0|^{p-1}$ is integrable on [a, b]. So by Lusin's Theorem and the property of

absolute continuity of an integral there exists a closed subset F of $[a, b] \setminus Z(f - q_0)$ such that both $f - q_0$ and q are continuous on F, and the complementary set

 $E := [a, b] \setminus Z(f - q_0) - F$

is so small that

$$\int_{E} |q| |f - q_0|^{p-1} dx < \frac{\rho}{4(2^{p-1} + 1)}.$$
(34)

Clearly

$$\begin{split} \mu &:= \min_{x \in F} |f(x) - q_0(x)| > 0, \\ M &:= \max_{x \in F} \{ \max\{|f(x) - q_0(x)|, |q(x)|\} \} < + \infty. \end{split}$$

(a) Assume that p = 1. Let

$$0 < \delta < \frac{\mu}{2M}$$

Then for $x \in F$ we have

$$\operatorname{sgn}[f(x) - q_0(x) - \delta q(x)] = \operatorname{sgn}[f(x) - q_0(x)].$$
(35)

So by (34), (33), and the hypothesis of mes $Z(f - q_0) = 0$ we see

$$\begin{split} \|f - q_0 - \delta q\|_1 &= \int_E |f - q_0 - \delta q| \, dx + \int_F (f - q_0 - \delta q) \, \mathrm{sgn}(f - q_0) \, dx \\ &\leq \int_E |f - q_0| \, dx + \delta \int_E |q| \, dx + \int_F |f - q_0| \, dx \\ &- \delta \int_F q \, \mathrm{sgn}(f - q_0) \, dx \\ &\leq \|f - q_0\|_1 + 2\delta \int_E |q| \, dx - \delta \int_{E + F} q \, \mathrm{sgn}(f - q_0) \, dx \\ &\leq \|f - q_0\|_1 + \frac{\delta \rho}{4} - \delta \rho < \|f - q_0\|_1. \end{split}$$

(b) Assume that p > 1. Let

Then (35) holds for any $x \in F = F_+ \cup F_-$. So by the Taylor Formula we have

$$|f - q_{0} - \delta q|^{p} = \begin{cases} (f - q_{0})^{p} - \delta pq(f - q_{0})^{p-1} \\ + \frac{1}{2}\delta^{2}p(p-1) q^{2}(f - q_{0} - \Delta q)^{p-2}, & x \in F_{+}, \\ (q_{0} - f)^{p} + \delta pq(q_{0} - f)^{p-1} \\ + \frac{1}{2}\delta^{2}p(p-1) q^{2}(-f + q_{0} + \Delta q)^{p-2}, & x \in F_{-}, \end{cases}$$
(36)

where $\Delta = \Delta(x)$ satisfies $0 < \Delta(x) < \delta$. Considering $\delta < \mu/(2M) < 1$, by the definition of μ and M we get

$$|f-q_0-\varDelta q|^{p-2} < \begin{cases} (\mu/2)^{p-2}, & p<2, \\ (2M)^{p-2}, & p \ge 2, \end{cases} \quad x \in F.$$

Then from the definition of δ it follows that

$$\frac{1}{2}\delta(p-1)\int_{F}q^{2}|f-q_{0}-\varDelta q|^{p-2}dx$$

$$<\frac{1}{2}\delta(p-1)(b-a)M^{2}\max\{(\mu/2)^{p-2},(2M)^{p-2}\}<\frac{\rho}{2}.$$
 (37)

And for $x \in E$, by the Taylor Formula we have

$$\begin{split} |f - q_0 - \delta q|^p &\leq \left[|f - q_0| + \delta |q| \right]^p \\ &= |f - q_0|^p + \delta p |q| (|f - q_0| + \Delta |q|)^{p-1} \\ &\leq |f - q_0|^p + \delta p 2^{p-1} |q| |f - q_0|^{p-1} + \delta p (2\Delta)^{p-1} |q|^p, \end{split}$$

$$(38)$$

where $\Delta = \Delta(x)$ satisfies $0 < \Delta(x) < \delta$.

Now, from (38), (36), (37), (34), (33), and the definition of δ we have $\|f-q_0-\delta q\|_p^p$ $= \left(\int_{E} + \int_{Z(f-q_0)} + \int_{E}\right) |f-q_0 - \delta q|^p dx$ $\leq \int_{E} \left[|f - q_0|^p + \delta p 2^{p-1} |q| |f - q_0|^{p-1} \right] dx$ + $\delta^{p} p^{2^{p-1}} \int_{E} |q|^{p} dx + \delta^{p} \int_{Z(\ell-q_{0})} |q|^{p} dx$ $+ \int_{F} \left[\|f - q_0\|^p - \delta p q \|f - q_0\|^{p-1} \operatorname{sgn}(f - q_0) \right]$ $+\frac{1}{2}\delta^2 p(p-1)q^2|f-q_0-\Delta q|^{p-2}|dx$ + $\int_{r} \int |f-q_0|^p - \delta pq |f-q_0|^{p-1} \operatorname{sgn}(f-q_0)$ $+\frac{1}{2}\delta^2 p(p-1)q^2|f-q_0-\Delta q|^{p-2}dx$ $\leq \|f - q_0\|_p^p + \delta p 2^{p-1} \int_{\Gamma} |q| \|f - q_0\|^{p-1} dx$ $+\delta p \int_{F} q |f-q_0|^{p-1} \operatorname{sgn}(f-q_0) dx$ $-\delta p \int_{F} q |f-q_0|^{p-1} \operatorname{sgn} |f-q_0| dx$ $-\delta p \int_{\Gamma} q |f-q_0|^{p-1} \operatorname{sgn}(f-q_0) dx$ $+ \delta^{p} p 2^{p-1} \|q\|_{p}^{p} + \delta p \cdot \frac{1}{2} \delta(p-1) \int_{\mathbb{T}} q^{2} |f-q_{0} - \Delta q|^{p-2} dx$ $\leq \|f - q_0\|_p^p + \delta p(2^{p-1} + 1) \int_{\Gamma} |q| \|f - q_0\|_p^{p-1} dx$ $-\delta p \int_{0}^{b} q |f-q_{0}|^{p-1} \operatorname{sgn}(f-q_{0}) dx + \delta p \, \delta^{p-1} 2^{p-1} \|q\|_{p}^{p} + \delta p \, \frac{\rho}{2}$ $< \|f - q_0\|_p^p + \delta p \frac{\rho}{4} - \delta p \rho + \delta p \frac{\rho}{4} + \delta p \frac{\rho}{2}$ $= \|f - q_0\|_p^p$.

Based on (a) and (b), we see that if $(q, -h_0) < 0$, then there exists a $\delta > 0$ such that $q_0 + \delta q \in K_{q_0}^p$, which means $q \in \operatorname{cc}(K_{q_0}^p - q_0)$. So if $(q, -h_0) \leq 0$ then $q \in \overline{\operatorname{cc}}(K_{q_0}^p - q_0)$, which is

$$\{-h_0\}^\circ \subset \operatorname{cc}(K_{q_0}^p - q_0)$$

Combining (i) with (ii) we obtain (30), and the lemma is established.

Note. If we omit the condition that mes $Z(f - q_0) = 0$ when p = 1, then (29) may be false. A counterexample is as follows: Let [a, b] = [-1, 1];

$$f(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0; \end{cases} \quad n = 2; \quad \Phi_n = \operatorname{span}(1, x), \quad \text{and} \quad q_0(x) \equiv 0.$$

Then $K_{q_0}^1 \neq \emptyset$ since $||f - q_0||_1 = 1$, and $||f - ((1/2) + (x/2))||_1 < 1$. For any $q = a_1 + a_2 x$ with $a_1 < 0$, by drawing a diagram we can find that $||f - q||_1 > 1$. So

$$a_1 \ge 0$$
, if $q \in K_{a_0}^1$

Now let $q_1 = (-1, 0)$. Then for any $q \in K_{q_0}^1$ we have $(q, q_1) \leq 0$. So

$$q_1 \in (K_{q_0}^1)^\circ = (K_{q_0}^1 - q_0)^\circ.$$

But $q_1 \notin \{-\eta(c_1, c_2) : \eta \ge 0\}$ since $c_2 = \int_{-1}^{1} x \operatorname{sgn}(f - q_0) dx = 1/2$.

Proof of Theorem 2. The proof is similar to that of Theorem 1 in which one uses Lemma D instead of Lemma 6. ■

ACKNOWLEDGMENT

The author is grateful to the referees for their valuable corrections and suggestions, which helped in the revision of the manuscript.

REFERENCES

- S. S. Xu, Characterization of best uniform approximation with restricted ranges of derivatives, *Approx. Theory Appl.* 13 (1997), 37–48.
- G. D. Taylor, Approximation by functions having restricted ranges, III, J. Math. Anal. Appl. 27 (1969), 241–248.
- Y. K. Shih, Best approximation having restricted ranges with nodes, J. Comput. Math. 2 (1980), 124–132 [in Chinese].
- S. S. Xu, A characterization of best approximation with restricted ranges, J. Approx. Theory 71 (1992), 193–212.
- 5. J. Zhong, Best restricted range approximation, *Numer. Funct. Anal. Optim.* 14 (1993), 179–194.

- E. Passow and G. D. Taylor, An alternation theory for positive approximation, J. Approx. Theory 19 (1977), 123–134.
- Y. K. Shih, An alternation theorem for copositive approximation, *Acta Math. Sinica* 24, No. 3 (1981), 409–414 [in Chinese].
- J. Zhong, On the characterization and strong uniqueness of best copositive approximation, J. Comput. Math. 10 (1988), 86–93 [in Chinese].
- 9. J. Zhong, Best copositive approximation, J. Approx. Theory 72 (1993), 210-233.
- S. J. Karlin and W. J. Studden, "Tchebycheff Systems: with Applications in Analysis and Statistics," Interscience, New York, 1966.
- P. J. Laurent, "Approximation et Optimisation," Collection Enseignement des Sciences, Vol. 13, Hermann, Paris, 1972.
- 12. N. P. Korneichuk, "Ekstremal'nye zadachi teorii priblizheniya," Nauka, Moscow, 1976.