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The paper improves the characterization theorem of a best uniform approxima-
tion by a set of generalized polynomials having restricted ranges of derivatives
obtained in an earlier paper and gives a characterization of a best approximation
with certain constraints in the Lp norm (1� p<+�). These results are applicable
to many standard approximations with constraints. � 1998 Academic Press

1. INTRODUCTION

Assume X/[a, b] is a compact set containing at least n+1 points,
8n=span[.1 , ..., .n] is an n-dimensional subspace of Lp[a, b] with
1� p�+�, and for a fixed nonnegative integer k, the k th derivatives
. (k)

1 , ..., . (k)
n are continuous. For s=0, 1, ..., k, assume that [.(s)

1 , ..., . (s)
n ]

has a maximal linearly independent subset which is an extended.
Chebyshev system of order rs on [a, b] (see the definition in [10, Chap. 1,
Sect. 2], and write

Ks=[q # 8n : ls(x)�q(s)(x)�us(x), x # [a, b]],

where ls and us are extended real valued functions such that &��
ls(x)�us(x)�+�. Let

KS= ,
k

s=0

Ks .

With respect to uniform approximation (i.e., p=+�) by K0 , which is
the set of generalized polynomials having restricted ranges, Taylor [2]
(1969) got a characterization theorem of a best approximation under the
hypothesis l0<u0 . The investigation by Shih [3] (1980) allows l0(xi)=
u0(xi) at a set of nodes [xi], but some strong conditions are required.
Getting rid of Shih's strong conditions, the author [4] (1992) and Zhong
[5] (1993) independently gave the characterization theorems in forms of
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convex hulls and alternation in the general case of l0(x)�u0(x), which con-
tains the special cases of approximation with interpolatory constraints,
one-sided approximation, and copositive approximation. As we pointed
out in [4], all the characterization theorems in [6], [7], and [8] are spe-
cial cases of the case in [4]. However, the later result of Zhong [9] (1993)
is not a special case of [4] because in order to apply it to the copositive
case, [.1 , ..., .n] must be a Chebyshev system of order 2 while it is only
required to be a Chebyshev system by [9].

Recently, we [1] got a characterization of a best uniform approximation by
KS , which has many special cases such as monotone approximation, coconvex
approximation, multiple comonotone approximation, approximation with
Hermite�Birkhoff interpolatory side conditions, and approximation by
algebraic polynomials having bounded coefficients (if 0 # [a, b]), etc.

In this paper, we first improve the result of [1] and then give a charac-
terization theorem of a best Lp (1� p<+�) approximation by the
product of KS and a so-called ``local convex cone.''

2. MAIN RESULTS

To introduce the main results of this paper, we need some notation.
For a fixed q0 # Ks , let

d(q (s)
0 (x), ls)= inf

! # [a, b]
- (!&x)2+[ls(!)&q (s)

0 (x)]2,

and define d(q (s)
0 (x), us) similarly. Write the set of all the nodes of Ks as

X*s=[x # [a, b] : d(q (s)
0 (x), ls)=d(q (s)

0 (x), us)=0].

If x # [a, b), by the use of

�
! � x+0

us(!)&q (s)
0 (!)

|!&x| t&1 =0 (1)

we define an integer-valued function ts, 1, 1(x) as follows:

ts, 1, 1(x)={
0, if x � X*s and (1) does not hold for any positive integer t,

1, if x # X*s and (1) does not hold for any positive integer t,

{, if there exists a positive integer {<rs such that (1) holds

for t={ but not for t={+1,

rs+1, if (1) holds for t=rs but not for any positive integer t,

+�, if (1) holds for any positive integer t.

340 SHU-SHENG XU



File: DISTIL 313003 . By:CV . Date:25:02:98 . Time:14:52 LOP8M. V8.B. Page 01:01
Codes: 2582 Signs: 1242 . Length: 45 pic 0 pts, 190 mm

Similarly, using

�
! � x+0

q (s)
0 (!)&ls(!)
|!&x| t&1 =0 (2)

we define ts, 1, &1(x). And substituting x&0 for x+0 in (1) and (2), we
define ts, &1, 1(x) and ts, &1, &1(x) respectively for x # (a, b].

Given x # [a, b], write

t\=max[min[ts, 1, 1(x), ts, 1, &1(x)], min[ts, &1, 1(x), ts, &1, &1(x)]],

|=(&1)t\,

and define

ts(x)={t\+1,
t\ ,

if there exists a & such that ts, 1, &(x), ts, &1, &|&(x)>t\ ,
otherwise,

Ts= max
x # [a, b]

[ts(x)].

Similar to the explanation for t(x) at the end of Section 3 of [4], where
t(x) coincides with t0(x) here, we see that under the condition of (4) below
ts(x) is just the minimum of the orders of the zero x of q1&q2 for all
choices of q1 , q2 # Ks . So in fact ts(x) and Ts are independent of the choices
of q0 , and hence we call ts(x) the order of quasi-touch of ls and us at x, and
Ts the order of quasi-touch of ls and us on [a, b].

In what follows we always assume that q0 # Ks unless otherwise stated,
and for each s=0, ..., k,

[q(s) : q # Ks]"[q (s)
0 ]{< (3)

and

{Ts�rs ,
ts(x)<rs , x # X"s ,

(4)

where X"s will be defined later.
Let

X$s=[x # [a, b]"X*s : d(q (s)
0 (x), ls) or d(q (s)

0 (x), us)=0],

_s(x)={1,
&1,

if x # X$s and d(q (s)
0 (x), ls)=0,

if x # X$s and d(q (s)
0 (x), us)=0;

X"s=[x # X*s : there exist + and & such that ts, +, &(x)>ts(x)],

_s(x)=&&(&1)[(+&1)�2] ts (x), if x # X"s and ts, +, &(x)>ts(x) ;
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and

x̂=(.1(x), ..., .n(x)),

x̂(s+t)=(. (s+t)
1 (x), ..., . (s+t)

n (x)),

Ns=[\x̂ (s+t) : t=0, 1, ..., ts(x)&1, x # X*s ]

_ [&_s(x) x̂(s+ts (x)) : x # X$s _ X"s].

Moreover, for f # C(X) or f # Lp[a, b] with 1� p<+�, we write
respectively

K �
q0

=[q # 8n : & f &q&�<& f &q0&�]

or

K p
q0

=[q # 8n : & f &q&p<& f &q0&p].

And if f # C(X), we write

X=[x # X : | f (x)&q0(x)|=& f &q0&�]

and

Nq0
=[&sgn[ f (x)&q0(x)] x̂ : x # X].

By letting q1=�n
j=1 aj.j and q2=�n

j=1 bj .j be any elements of 8n , we
define their inner product by (q1 , q2)=�n

j=1 ajbj . For any subset A of the
space 8n , we define

A%=[h # 8n : (q, h)�0, \q # A].

Let

cc(A)={q : q= :
m

j=1

*jqj , qj # A, *j�0, m is an arbitrary positive integer=
if A{<, and cc(A)=[0] if A=<. By cc(A) we denote the closure of
cc(A). And the relative interior of A in 8n , which we denote by ri(A), is
defined as follows:

ri(A)=[q # aff(A) : _$>0, O(q, $) & aff(A)/A],
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where

aff(A) :=[*1 q1+ } } } +*mqm | qi # A, *1+ } } } +*m=1]

and O(q, $) is the $-neighborhood of q.
Now we can restate the main result of [1] as follows:

Theorem A. Assume that f # C(X)"KS , K �
q0

{<. If

,
k

s=0

ri(Ks){<,

then q0 is a best uniform approximation to f from KS if and only if there
exists a vector h # cc(Nq0

)"[0] such that

&h # cc \ .
k

s=0

Ns+ .

Given a subscript set 4, and for each * # 4 a real number d* and a vector
h* # 8n"[0], we say that

K4 :=[q # 8n : (q, h*)�d* , * # 4]

is a local convex cone at q0 # K4 if there exists a $>0 such that the
$-neighborhood of q0 in 8n O(q0 , $) satisfies

O(q0 , $)/[q # 8n : (q, h*)�d* , * # 4"4$],

where

4$=[* # 4 : (q0 , h*)=d*].

Now, the first result of this paper is as follows:

Theorem 1. Assume that K4 is a local convex cone at q0 # K :=
K4 & KS , f # C(X)"K, K �

q0
{<. If

ri(K4) & _ ,
k

s=0

ri(Ks)&{<, (5)

then q0 is a best uniform approximation to f from K if and only if there exists
a vector h # cc(Nq0

)"[0] such that

&h # cc \[h* : * # 4$] _ \ .
k

s=0

Ns++ . (6)
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And if in addition 4$ is a finite set, then (6) can be substituted by

&h # cc \[h* : * # 4$] _ \ .
k

s=0

Ns++ .

Theorem 1 improves Theorem A in two respects. First, it allows us to
add some linear constraints (i.e., (q, h*)�d*) to the coefficients of q in K.
For example, the set of generalized polynomials with bounded coefficients
[q=�n

i=1 ai.i : :i�ai�;i , i=1, ..., n] is a special case of K4 . Second,
when 4$ is a finite set, cc(v) in (6) can be rewritten as cc(v), which is more
precise in formulation and more valuable in applications.

The second result of the paper is a similar characterization theorem of a
best approximation in the Lp norm (1� p<+�):

Theorem 2. Assume that K4 is a local convex cone at q0 # K=K4 & KS ,
f # Lp"K, 1� p<+�, K p

q0
{<, and (5) holds. If mes Z( f &q0)=0 when

p=1, where mes Z( f &q0) is the measure of the set

Z( f &q0)=[x # [a, b] : f (x)&q0(x)=0],

then q0 is a best Lp approximation to f from K if and only if

(c1 , ..., cn) # cc \[h* : * # 4$] _ \ .
k

s=0

Ns++ , (7)

where

ci=|
b

a
.i | f &q0 | p&1 sgn( f &q0) dx, i=1, ..., n.

And if in addition 4$ is a finite set, then (7) can be substituted by

(c1 , ..., cn) # cc \[h* : * # 4$] _ \ .
k

s=0

Ns++ .

3. PROOF OF THEOREM 1

If we apply Theorem (6.9.7) in [11] to the case being discussed here,
then the theorem can be rewritten as
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Lemma A. Assume that K/8n is a closed convex set, q0 # K. If
f # C(X)"K and K �

q0
{< (or f # Lp[a, b]"K, 1� p<+�, and K p

q0
{<),

then q0 is a best approximation to f from K in uniform norm (or Lp norm)
if and only if there exists a vector h # (K �

q0
&q0)%"[0] (or (K p

q0
&q0)%"[0])

such that &h # (K&q0)%.

Now we restate Proposition (6.9.2) in [11] and Lemmas 3 and 4 in [1]
as follows:

Lemma B. If A/8n , then

A%%=cc(A).

And if A is a convex compact set not containing the origin, then

A%%=cc(A).

Lemma C. For s=0, ..., k, we have

(Ks&q0)%=cc(Ns).

Lemma D. If f # C(X), q0 # 8n , and K �
q0

{<, then

(K �
q0

&q0)%=cc(Nq0
).

Lemma 1. Assume Ci , i=0, 1, ..., m, are closed convex subsets of 8n ,
0 # �m

i=0 Ci and �m
i=0 ri(Ci){<, then

\,
m

i=0

Ci+%
=cc \.

m

i=0

C%i+ .

Proof. Since (C0)%=cc(C%)0 , we can assume inductively

\,
l&1

i=0

Ci+%
=cc \,

l&1

i=0

C%i+ .

We will now prove

\,
l

i=0

Ci+%
=cc \.

l

i=0

C%i+ .
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Take g0 # �m
i=0 ri(Ci). For j=0, ..., l, by C%j /cc(� l

i=0 C%i ), the definition
of (v)%, and Lemma B we get

\cc \.
l

i=0

C%i++%
/Cj%%=cc(Cj).

So for any g # (cc(� l
i=0 C%i ))%, by the convexity of cc(Cj) we see that for

any * # (0, 1)

g* :=*g+(1&*) g0 # cc(Cj), j=0, 1, ..., l.

Since 0 # �m
i=0 Ci , there exists an =>0 such that =g* # � l

i=0 Ci . So
g* # cc(� l

i=0 Ci) and hence g # cc(� l
i=0 Ci). So

\cc \.
l

i=0

C%i++%
/cc \,

l

i=0

Ci+ .

On the other hand, for any g # cc(� l
i=0 Ci), based on Lemma B we have

g # cc(Cj)=Cj%%, j=0, 1, ..., l. So by the definition of (v)% we get
g # (cc(� l

i=0 C%i ))%. Then

\cc \.
l

i=0

C%i++%
=cc \,

l

i=0

Ci+ .

Combined with Lemma B we get

\,
l

i=0

Ci+%
=\cc \,

l

i=0

Ci ++%
=\cc \,

l

i=0

C%i++%%

=cc \.
l

i=0

C%i+ .

Now to complete the proof it is sufficient to show

cc \.
l

i=0

C%i+=cc \.
l

i=0

C%i+ .

Write 9=span(� l&1
i=0 Ci). For any g # cc(� l

i=0 C%i ), there exist
hj # cc(� l

i=0 C%i ), j=1, 2, ..., such that

hj � g ( j � �).

Let

hj=h1 j+h2 j+h3 j+h4 j ,
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where

h1 j+h2 j # cc \.
l&1

i=0

C%i+=\,
l&1

i=0

Ci+%
,

(8)

h3 j+h4 j # cc(C%l )=C%l ,

{h1 j , h3 j # 9+span Cl ,
h2 j , h4 j = 9+span Cl .

(9)

From the boundedness of [hj] we see that [h2 j+h4 j] is bounded. So there
exists a subsequence of [h2 j+h4 j] (we still denote it by [h2 j+h4 j] for con-
venience) and a g2 = 9+span Cl such that when j � �

h2 j+h4 j � g2 # C%l . (10)

Since (h2 j , g� )=0 for any g� # 9, by (8) we have

h1 j=(h1 j+h2 j)&h2 j # \,
l&1

i=0

Ci+%
. (11)

Similarly

h3 j # C%l . (12)

Assume that [ |h1 j |] is unbounded, then [h1 j �|h1 j |] has a subsequence
which converges to an h{0. And by the boundedness of [h1 j+h3 j] we see
that [h3 j �|h1 j |] converges to &h. Thus by (9), (11), and (12)

{h # (9+span Cl) & \,
l&1

i=0

Ci+%
,

(13)

&h # Cl%.

For g0 # �m
i=0 ri(Ci) and any g� # 9 there exists an =>0 such that

g0\=g� # � l&1
i=0 Ci . So (g0\=g� , h)�0. Since (13) implies (g0 , \h)�0,

hence (g0 , h)=0, we have (g� , h)=0. Similarly, (g�� , h)=0 for any
g�� # span Cl . Then h = (9+span Cl) which contradicts (13). Now we see
that [ |h1 j |] is bounded and hence [ |h3 j |] is bounded too. So by (11) and
(12) there exist g1 and g3 such that

h1 j � g1 # \,
l&1

i=0

Ci+%
, h3 j � g3 # C%l
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(taking subsequences if necessary) when j � �. Thus by (10) and the
inductive assumption we have

g= g1+ g2+ g3 # cc \.
l

i=0

C%i+ . K

Lemma 2. For each s=0, 1, ..., k, if

$s=inf [ |x1&x2 | : x1 , x2 # X*s , x1 {x2],

then for any x # X*s there exists a positive $0<$s such that

(x, x+$0] & X$s=< or _s(!)=_s(x), ! # (x, x+$0] & X$s , (14)

and

[x&$0 , x) & X$s=< or _s(!)=(&1)ts(x) _s (x), ! # [x&$0 , x) & X$s . (15)

Proof. Because for any q # Ks we have q(s)(x)=q (s)
0 (x), x # X*s , by (3)

and the definition of the extended Chebyshev system we conclude that X*s
is a finite set and hence $s>0.

Assume (x, x+$] & X$s {< for any positive $<$s .
If for any positive $<$s there exists !, ' # (x, x+$] & X$s such that

_s(!)=1, _s(')=&1, then there exist two sequences [!i] and ['i] such
that !i , 'i � x+0 (i � �) and

{d(q (s)
0 (!i), ls)=0,

d(q (s)
0 (!i), us)=0,

i=1, 2, ... .

So for any q # Ks we have

{q(s)(!i)&q (s)
0 (!i)�0,

q(s)('i)&q (s)
0 ('i)�0,

i=1, 2, ...,

which implies that q(s)&q (s)
0 #0 by the definition of the extended

Chebyshev system. This contradicts the hypothesis of (3). Now we see that
there exists a positive $0<$s such that _s(!)#constant for any
! # (x, x+$0] & X$s . Without loss of generality, we assume that the con-
stant equals 1. So there exists a sequence [!i] with !i � x+0 (i � �) and
d(q (s)

0 (!i), ls)=0. Then by the definition we get directly ts, 1, &1(x)=� and
_s(x)=1 which implies (14). The proof of (15) is similar. K

348 SHU-SHENG XU



File: DISTIL 313011 . By:CV . Date:25:02:98 . Time:14:52 LOP8M. V8.B. Page 01:01
Codes: 2729 Signs: 1022 . Length: 45 pic 0 pts, 190 mm

Lemma 3. For 0�s�k, x # X*s , if there is a positive $0<$s that
satisfies (14) and (15), then

(H&q0)%=cc(M),

where

H=[q # 8n : ls(x)�q(s)(x)�us(x), x # [x&$0 , x+$0]], (16)

M=[\x̂(s+ j) : j=0, 1, ..., ts(x)&1]

_ [&_s(!) !� (s+ts (!)) : ! # [x&$0 , x+$0] & (X$s _ X"s )]. (17)

Proof. By . (s)
i [x0 , x1 , ..., xj] we denoted the difference quotient of the

jth order of . (s)
i . Write

[ x0 , x1 , ..., xj@](s)=(. (s)
1 [x0 , ..., xj], ..., . (s)

n [x0 , ..., xj]).

Based on the well-known property of the difference quotient with coales-
cent knots we have

[ x, ..., x@
j+1

](s)=
1
j !

x̂ (s+ j) (18)

and

1
xj&x {[x, ..., x, xj@

j&1

](s)&
1

( j&1)!
x̂(s+ j&1)==[x, ..., x, xj@

j

](s). (19)

Write ts(x) as t for convenience. Since Lemma C implies (H&q0)%=
cc(M), it is sufficient to prove that h # cc(M) if h # cc(M).

If h=0, then h # cc(M) clearly. Otherwise, there exist hi {0, i=1, 2, ...,
such that hi # cc(M) and

hi � h (i � �).

(i) Provided x # X"s , let _=_s(x). Since by the definition of ts we
have ts(!)=0 for any ! # X$s , from the Carathe� odory theorem we can write

hi= :
t

j=0

%ij x̂ (s+ j)+ :
t+mj

j=t+1

%ij x̂ (s)
ij , (20)
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where 0�mi�n+1, xij # [x&$0 , x+$0] & X$s , and

{&_%it�0,
&$s(xij) %ij>0, j=t+1, ..., t+mi .

(21)

Take a subsequence of [hi] if necessary (still denoted by [hi]) such that
mi equals a constant m (clearly, 0�m�n+1); for each j=t+1, ..., t+m,
_s(xij) (i=1, 2, ...) is a constant; and there exists an xj such that xij � xj

(i � �). Then from (21), (14), and (15) we have

&_s(xj) %ij>0, if j # J0 :=[ j: xj {x, j=t+1, ..., t+m],

{&_%ij>0, if j # J :=[ j: xj=x, j=t+1, ..., t+m] and xij>x,

&(&1)t _%ij>0, if j # J :=[ j: xj=x, j=t+1, ..., t+m] and xij<x.

(22)

Let

%$ij=%ij , j # J0 or j=t,

{%$il=%il+
1
l !

:
j # J

%ij (xij&x) l, l=0, ..., t&1, (23)

%$ij=%ij (xij&x)t, j # J.

Since (19) implies

x̂ (s)
ij & :

t&1

l=0

(xij&x) l 1
l !

x̂(s+l )=(xij&x)[x, xij@](s)& :
t&1

l=1

(xij&x) l 1
l !

x̂(s+l)

=(xij&x)2 [ x, x, xij@](s)& :
t&1

l=2

(xij&x) l 1
l !

x̂(s+l )

= } } }

=(xij&x)t [x, ..., x, xij@
t

](s),

we can rewrite hi as

hi= :
t

j=0

%$ij x̂(s+ j)+ :
j # J

%$ij[x, ..., x, xij@
t

](s)+ :
j # J0

%$ij x̂ (s)
ij .

Now we shall prove that the sequence [Aj], Ai :=maxj=0, ..., t+m |%$ij |, is
bounded. In fact, otherwise [Ai] (or its subsequence) satisfies Ai � +�

350 SHU-SHENG XU



File: DISTIL 313013 . By:CV . Date:25:02:98 . Time:14:52 LOP8M. V8.B. Page 01:01
Codes: 2420 Signs: 1179 . Length: 45 pic 0 pts, 190 mm

(i � �); %$ij �Ai has a limit %j ; and at least one of [%j]t+m
j=0 does not equal

zero. Since limi � � hi�Ai=0, by (18) we see that zero equals

:
t&1

j=0

%j x̂(s+ j)+\%t+
1
t !

:
j # J

%j+ x̂ (s+t)+ :
j # J0

%j x̂(s)
j , (24)

and (21)�(23) imply

&_%t�0,

{&_%j�0, j # J, (25)

&_s(xj) %j�0, j # J0 .

Because the definition of extended Chebyshev system of order rs and the
hypothesis t�rs imply that [x̂ (s+ j)]t&1

j=0 are linearly independent, therefore
at least one of %j 's ( j=t, ..., t+m) does not equal zero. Based on Lemma 5
of [4] (substituted 8n by span[. (s)

1 , ..., . (s)
n ]), there exists a q # Ks such

that

q(s+ j)(x)=0, j=0, ..., t&1,

{_q(s+t)(x)>0,

_s(xj) q(s)(xj)>0.

So by (24) and (25) we have

0=(0, q)

= :
t&1

j=0

%j q(s+ j)(x)+_%t+
1
t !

:
j # J

%j& q(s+t)(x)+ :
j # J0

%jq(s)(xj)<0,

which is a contradiction. Thus Ai is bounded.
Now, if we write the limit of %$ij as %j , then h=lim i � � hi still has the

form of (24). And by (25) we have h # cc (M).

(ii) If x � X"s , then [x&$0 , x+$0] & X$s=<. So in (20) we have
mi=0 and %it=0. Let Ai=maxj=0, ..., t&1 |%ij |. Then from the linear inde-
pendence of [x̂(s+ j)]t&1

j=0 it is not difficult to see that [Ai] is bounded. So
h=limi � � hi # cc(M). K

Lemma 4. For each s=1, ..., k,

(Ks&q0)%=cc(Ns). (26)
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Proof. Assume that X*s=[x1 , ..., xm]. By Lemma 2 there exists a
positive $0<$s such that (14) and (15) hold for every x # X*s . Write

H0=[q # 8n : ls(x)�q(s)(x)�us(x), s # [a, b]"O(X*s , $0)],

M0=[&_s(x) x̂(s) : x # X$s"O(X*s , $0)].

For each i=1, ..., m, by Hi and Mi we denote respectively the sets of (16)
and (17) with x substituted by xi . Then

Ks= ,
m

i=0

Hi ,

Ns= .
m

i=0

Mi ,

(Hi&q0)%=cc(Mi), i=1, ..., m.

Suppose

(H0&q0)%=cc(M0). (27)

If by Lemma 5 in [4] we take a q # Ks such that

{q(s+ j)(xi)=0,
_s (!) q(s+ts(!))(!)>0,

j=0, 1, ..., ts(xi)&1, i=1, ..., m,
! # X$s _ X"s ,

(28)

then it is clear that

1
2 (q&q0) # ,

m

i=0

ri(Hi),

and by Lemma 1 we have

(Ks&q0)%=_,
m

i=0

(Hi&q0)&%
=cc \.

m

i=0

(Hi&q0)%+=cc(Ns).

Now it is sufficient to prove (27). In fact, if 0 � co(M0), which denotes
the convex hull of M0 , then from Lemma B we have

cc(co(M0))=cc(co(M0)).

So by Lemma C with Ks replaced by H0 we get (27). On the other hand,
it is impossible that 0 # co(M0) because otherwise we have

:
r

j=0

*j_s(!j) !� (s)
j =0, *j<0, !j # X$s "O(X*s , $0),
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and hence for the q satisfying (28)

:
r

j=0

*j_s(!j) q(s)(!j)=(q, 0)=0,

which contradicts the second inequality of (28). K

Lemma 5. If K4 /8n is a local convex cone at q0 # K4 , then

(K4&q0)%=cc([h* : * # 4$]).

Proof. Since [cc(A)]%=A%, by Lemma B it is sufficient to prove that

cc(K4&q0)=[cc([h* : * # 4$])]%.

Write

H*=[q # 8n : (q, h*)�d*].

Assume q # cc(K4&q0). For any * # 4$, it is clear that q # cc(H*&q0) and
(q+q0 , h*)�d* . So (q, h*)�0, * # 4$, and hence

q # [cc([h* : * # 4$])]%.

On the other hand, suppose q � cc(K4&q0). By the definition of a local
convex cone there exists a $>0 such that

$q # H*&q0 , * � 4$.

If

$q # cc(H*&q0), * # 4$,

then $q # K4&q0 and q # cc(K4&q0), which contradicts the hypothesis. So
there exists at least one *0 # 4$ such that $q � cc(H*0

&q0). So

($q, h*0
)>0,

which implies

q � [cc([h* : * # 4$])]%. K
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The Proof of Theorem 1. By Lemmas 1, 4, and 5 we have

(K&q0)%=cc \[h* : * # 4$] _ \ .
k

s=0

Ns ++ .

And if in addition 4$ is a finite set, it is clear that

cc([h* : * # 4$])=cc([h* : * # 4$]),

and hence

(K&q0)%=cc \[h* : * # 4$] _ \ .
k

s=0

Ns ++ .

Combining this with Lemma A and Lemma D we get the conclusion of
Theorem 1. K

4. PROOF OF THEOREM 2

Lemma 6. If f # Lp (1� p<+�), q0 # 8n , K p
q0

{<, and mes Z( f &
q0)=0 when p=1, then (c1 , ..., cn){0 and

(K p
q0

&q0)%=[&'(c1 , ..., cn) : '�0], (29)

where the ci 's are defined below (7).

Proof. Write

h0=(c1 , ..., cn).

Based on the characterization theorem of a best Lp approximation by the
linear subspace 8n (see [12, Theorems 3.3.1 and 3.3.2]), we see that if
h0=0 then q0 is a best approximation to f from 8n , which contradicts the
hypothesis of K p

q0
{<. Thus h0 {0.

Now, it is sufficient to prove

cc(K p
q0

&q0)=[&h0]% (30)

because by Lemma B it follows from (30) that

(cc(K p
q0

&q0))%=cc([&h0]),

which implies (29).

354 SHU-SHENG XU



File: DISTIL 313017 . By:CV . Date:25:02:98 . Time:14:52 LOP8M. V8.B. Page 01:01
Codes: 2207 Signs: 849 . Length: 45 pic 0 pts, 190 mm

(i) For q # cc(K p
q0

&q0), we will prove q # [&h0]%. Assume on the
contrary that (q, &h0)>0; then there must be a q1 # cc(K p

q0
&q0) such that

(q1 , &h0)>0. By the definition of h0 we get

|
b

a
q1 | f &q0 | p&1 sgn( f &q0) dx<0. (31)

It is easy to show that

& f &q0&p<& f &q0&$q1 &p , \$>0. (32)

In fact, if p=1, by (31) we have

& f &q0&1 =|
b

a
( f &q0&$q1) sgn( f &q0) dx+$ |

b

a
q1 sgn( f &q0) dx

<& f &q0&$q1&1 .

If p>1, then from the Ho� lder Inequality we have

& f &q0& p
p =|

b

a
( f &q0&$q1) | f &q0 | p&1 sgn( f &q0) dx

+$ |
b

a
q1 | f &q0 | p&1 sgn( f &q0) dx

<|
b

a
| f &q0&$q1 | | f &q0 | p&1 dx

�& f &q0&$q1&p & f &q0 & p&1
p .

And hence

& f &q0&p<& f &q0&$q1 &p ( p>1).

Now we get (32) and hence q1 � cc(K p
q0

&q0) which is a contradiction.

(ii) If (q, &h0)<0, then

\ :=(q, h0)=|
b

a
q | f &q0 | p&1 sgn( f &q0) dx>0. (33)

Since q # Lp and | f &q0 | p&1 # Lp$ (where (1�p)+(1�p$)=1), |q| | f &q0 | p&1

is integrable on [a, b]. So by Lusin's Theorem and the property of
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absolute continuity of an integral there exists a closed subset F of
[a, b]"Z( f &q0) such that both f &q0 and q are continuous on F, and the
complementary set

E :=[a, b]"Z( f &q0)&F

is so small that

|
E

|q| | f &q0 | p&1 dx<
\

4(2 p&1+1)
. (34)

Clearly

+ :=min
x # F

| f (x)&q0(x)|>0,

M :=max
x # F

[max[ | f (x)&q0(x)|, |q(x)|]]<+�.

(a) Assume that p=1. Let

0<$<
+

2M
.

Then for x # F we have

sgn[ f (x)&q0(x)&$q(x)]=sgn[ f (x)&q0(x)]. (35)

So by (34), (33), and the hypothesis of mes Z( f &q0)=0 we see

& f &q0&$q&1=|
E

| f &q0&$q| dx+|
F

( f &q0&$q) sgn( f &q0) dx

�|
E

| f &q0 | dx+$ |
E

|q| dx+|
F

| f &q0 | dx

&$ |
F

q sgn( f &q0) dx

�& f &q0&1+2$ |
E

|q| dx&$ |
E+F

q sgn( f &q0) dx

�& f &q0&1+
$\
4

&$\<& f &q0&1 .
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(b) Assume that p>1. Let

F+=[x # F : f (x)&q0(x)>0],

F&=[x # F : f (x)&q0(x)<0],

0<$<min { +
2M

,
\

( p&1)(b&a) M 2(+�2) p&2 ,

\
( p&1)(b&a) M 2(2M) p&2 , \ \

4 } 2 p&1 &q& p
p +

1�( p&1)

= .

Then (35) holds for any x # F=F+ _ F& . So by the Taylor Formula we
have

| f &q0&$q| p

={
( f &q0) p&$pq( f &q0) p&1

+ 1
2$2p( p&1) q2( f &q0&2q) p&2,

(q0& f ) p+$pq(q0& f ) p&1

+ 1
2$2p( p&1) q2(& f+q0+2q) p&2,

x # F+ ,

x # F& ,

(36)

where 2=2(x) satisfies 0<2(x)<$. Considering $<+�(2M)<1, by the
definition of + and M we get

| f &q0&2q| p&2<{(+�2) p&2,
(2M) p&2,

p<2,
p�2,

x # F.

Then from the definition of $ it follows that

1
2

$( p&1) |
F

q2 | f &q0&2q| p&2 dx

<
1
2

$( p&1)(b&a) M2 max[(+�2) p&2, (2M) p&2]<
\
2

. (37)

And for x # E, by the Taylor Formula we have

| f &q0&$q| p�[| f &q0 |+$ |q|] p

=| f &q0 | p+$p |q|( | f &q0 |+2 |q| ) p&1

�| f &q0 | p+$p2 p&1 |q| | f &q0 | p&1+$p(22) p&1 |q| p,

(38)

where 2=2(x) satisfies 0<2(x)<$.
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Now, from (38), (36), (37), (34), (33), and the definition of $ we have

& f &q0&$q& p
p

=\|E
+|

Z( f &q0)
+|

F + | f &q0&$q| p dx

�|
E

[ | f &q0 | p+$p2 p&1 |q| | f &q0 | p&1] dx

+_$ pp2 p&1 |
E

|q| p dx+$ p |
Z( f &q0)

|q| p dx&
+|

F+
_ | f &q0 | p&$pq | f &q0 | p&1 sgn( f &q0)

+
1
2

$2p( p&1) q2 | f &q0&2q| p&2& dx

+|
F&
_ | f &q0 | p&$pq | f &q0 | p&1 sgn( f &q0)

+
1
2

$2p( p&1) q2 | f &q0&2q| p&2& dx

�& f &q0& p
p +$p2 p&1 |

E
|q| | f &q0 | p&1 dx

+$p |
E

q | f &q0 | p&1 sgn( f &q0) dx

&$p |
E

q | f &q0 | p&1 sgn | f &q0 | dx

&$p |
F

q | f &q0 | p&1 sgn( f &q0) dx

+$ pp2 p&1 &q& p
p +$p }

1
2

$( p&1) |
F

q2 | f &q0&2q| p&2 dx

�& f&q0&p
p+$p(2p&1+1) |

E
|q| | f&q0 | p&1 dx

&$p |
b

a
q | f&q0| p&1 sgn( f&q0) dx+$p $ p&12 p&1 &q& p

p +$p
\
2

<& f &q0& p
p +$p

\
4

&$p\+$p
\
4

+$p
\
2

=& f &q0& p
p .
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Based on (a) and (b), we see that if (q, &h0)<0, then there exists a $>0
such that q0+$q # K p

q0
, which means q # cc(K p

q0
&q0). So if (q, &h0)�0

then q # cc(K p
q0

&q0), which is

[&h0]%/cc(K p
q0

&q0).

Combining (i) with (ii) we obtain (30), and the lemma is established. K

Note. If we omit the condition that mes Z( f &q0)=0 when p=1, then
(29) may be false. A counterexample is as follows: Let [a, b]=[&1, 1];

f (x)={1, x�0,
0, x<0;

n=2; 8n=span(1, x), and q0(x)#0.

Then K 1
q0

{< since & f &q0 &1=1, and & f &((1�2)+(x�2))&1<1. For
any q=a1+a2 x with a1<0, by drawing a diagram we can find that
& f &q&1>1. So

a1�0, if q # K 1
q0

.

Now let q1=(&1, 0). Then for any q # K 1
q0

we have (q, q1)�0. So

q1 # (K 1
q0

)%=(K 1
q0

&q0)%.

But q1 � [&'(c1 , c2) : '�0] since c2=�1
&1x sgn( f &q0) dx=1�2.

Proof of Theorem 2. The proof is similar to that of Theorem 1 in which
one uses Lemma D instead of Lemma 6. K
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